78 research outputs found
Direct calculation of mutual diffusion coefficients of binary system using non-equilibrium molecular dynamics simulation
Molecular dynamics (MD) simulation is widely used to calculate transport properties of fluids. In this study, non-equilibrium molecular dynamics (NEMD) simulation was applied to calculate mutual diffusion coefficients from the molecular flux at a given concentration gradient. First, the applicability of spherical molecular model was investigated by calculating self- and tracer diffusion coefficients of methane and n-decane mixture by a equilibrium MD simulation. The simulated self- and tracer diffusion coefficients of both components were in good agreement with literature data except in the case that methane molar fraction was nearly equal to zero. Further, the NEMD simulation was adopted to calculate mutual diffusion coefficients of binary system of methane and n-decane. This binary system exhibits anomalous concentration dependence of mutual diffusion coefficients in the vicinity of critical molar fraction according to the previously reported experimental data. The NEMD simulation well reproduced such concentration dependence of mutual diffusion coefficients. The simulation also gave a fairly good agreement with the calculated results by the Darken equation using tracer diffusion coefficients with a thermodynamic factor. © 2015 Elsevier B.V.Embargo Period 12 month
A large cavernous malformation of the third ventricle floor: A case report
Suprasellar and third ventricular region cavernous malformations originating from the floor of the third ventricle are extremely rare. We report a case of third ventricular cavernous malformation arising from the ventricle floor in a 24-year-old woman who presented with short-term memory loss and disorientation. Computed tomography revealed a suprasellar mass with calcification in the posterior chiasmatic region. T2-weighted magnetic resonance imaging revealed a mass with heterogeneous intensity and without hydrocephalus. The mass was slightly enhanced subsequent to gadolinium infusion. Using a basal interhemispheric translamina terminalis approach and a neuroendoscope, we confirmed that the tumor was located at the floor of the third ventricle and removed it. Histopathological examination confirmed the diagnosis of cavernous malformation. The postoperative course was uneventful, but the patient's short-term memory loss persisted. Despite its rarity, cavernous malformation should be suspected when a tumor is detected in the vicinity of the third ventricle floor. It is treatable through surgical resection
PLD4 Is Involved in Phagocytosis of Microglia: Expression and Localization Changes of PLD4 Are Correlated with Activation State of Microglia
Phospholipase D4 (PLD4) is a recently identified protein that is mainly expressed in the ionized calcium binding adapter molecule 1 (Iba1)-positive microglia in the early postnatal mouse cerebellar white matter. Unlike PLD1 and PLD2, PLD4 exhibits no enzymatic activity for conversion of phosphatidylcholine into choline and phosphatidic acid, and its function is completely unknown. In the present study, we examined the distribution of PLD4 in mouse cerebellar white matter during development and under pathological conditions. Immunohistochemical analysis revealed that PLD4 expression was associated with microglial activation under such two different circumstances. A primary cultured microglia and microglial cell line (MG6) showed that PLD4 was mainly present in the nucleus, except the nucleolus, and expression of PLD4 was upregulated by lipopolysaccharide (LPS) stimulation. In the analysis of phagocytosis of LPS-stimulated microglia, PLD4 was co-localized with phagosomes that contained BioParticles. Inhibition of PLD4 expression using PLD4 specific small interfering RNA (siRNA) in MG6 cells significantly reduced the ratio of phagocytotic cell numbers. These results suggest that the increased PLD4 in the activation process is involved in phagocytosis of activated microglia in the developmental stages and pathological conditions of white matter
Association between Serum Soluble Klotho Levels and Mortality in Chronic Hemodialysis Patients
Klotho is a single-pass transmembrane protein predominantly expressed in the kidney. The extracellular domain of Klotho is subject to ectodomain shedding and is released into the circulation as a soluble form. Soluble Klotho is also generated from alternative splicing of the Klotho gene. In mice, defects in Klotho expression lead to complex phenotypes resembling those observed in dialysis patients. However, the relationship between the level of serum soluble Klotho and overall survival in hemodialysis patients, who exhibit a state of Klotho deficiency, remains to be delineated. Here we prospectively followed a cohort of 63 patients with a mean duration of chronic hemodialysis of 6.7±5.4 years for a median of 65 months. Serum soluble Klotho was detectable in all patients (median 371 pg/mL, interquartile range 309–449). Patients with serum soluble Klotho levels below the lower quartile (<309 pg/mL) had significantly higher cardiovascular and all-cause mortality rates. Furthermore, the higher all-cause mortality persisted even after adjustment for confounders (hazard ratio 4.14, confidence interval 1.29–13.48). We conclude that there may be a threshold for the serum soluble Klotho level associated with a higher risk of mortality
Pathological and radiological correlation in an autopsy case of combined pulmonary fibrosis and emphysema
We report an educational autopsy case of combined pulmonary fibrosis and emphysema. Radiological patterns of the upper lung were considered as mostly emphysema, but pathological observation revealed significant interstitial fibrosis of usual interstitial pneumonia as a major pathology. The patient eventually developed acute exacerbation of background interstitial pneumonia. Careful radiological and pathological correlation of the current case indicates that regions with distal acinar emphysema on computed tomography image may possess histologically marked dense fibrosis of lethal interstitial pneumonia
Nepmucin, a novel HEV sialomucin, mediates L-selectin–dependent lymphocyte rolling and promotes lymphocyte adhesion under flow
Lymphocyte trafficking to lymph nodes (LNs) is initiated by the interaction between lymphocyte L-selectin and certain sialomucins, collectively termed peripheral node addressin (PNAd), carrying specific carbohydrates expressed by LN high endothelial venules (HEVs). Here, we identified a novel HEV-associated sialomucin, nepmucin (mucin not expressed in Peyer's patches [PPs]), that is expressed in LN HEVs but not detectable in PP HEVs at the protein level. Unlike conventional sialomucins, nepmucin contains a single V-type immunoglobulin (Ig) domain and a mucin-like domain. Using materials affinity-purified from LN lysates with soluble L-selectin, we found that two higher molecular weight species of nepmucin (75 and 95 kD) were decorated with oligosaccharides that bind L-selectin as well as an HEV-specific MECA-79 monoclonal antibody. Electron microscopic analysis showed that nepmucin accumulates in the extended luminal microvillus processes of LN HEVs. Upon appropriate glycosylation, nepmucin supported lymphocyte rolling via its mucin-like domain under physiological flow conditions. Furthermore, unlike most other sialomucins, nepmucin bound lymphocytes via its Ig domain, apparently independently of lymphocyte function–associated antigen 1 and very late antigen 4, and promoted shear-resistant lymphocyte binding in combination with intercellular adhesion molecule 1. Collectively, these results suggest that nepmucin may serve as a dual-functioning PNAd in LN HEVs, mediating both lymphocyte rolling and binding via different functional domains
Plasma intact fibroblast growth factor 23 levels in women with anorexia nervosa
<p>Abstract</p> <p>Background</p> <p>Fibroblast growth factor (FGF)23 is a novel phosphaturic factor associated with inorganic phosphate homeostasis. Previous human studies have shown that serum FGF23 levels increase in response to a high phosphate diet. For anorexia nervosa (AN) patients, inorganic phosphate homeostasis is important in the clinical course, such as in refeeding syndrome. The purpose of this study was to determine plasma levels of intact FGF23 (iFGF23) in restricting-type AN (AN-R) patients, binge-eating/purging-type AN (AN-BP) patients, and healthy controls.</p> <p>Methods</p> <p>The subjects consisted of 6 female AN-R patients, 6 female AN-BP patients, and 11 healthy female controls; both inpatients and outpatients were included. Plasma iFGF23, 1,25-dihydroxyvitamin D (1,25-(OH)<sub>2</sub>D), and 25-hydroxyvitamin D (25-OHD) levels were measured. Data are presented as the median and the range. A two-tailed Mann-Whitney U-test with Bonferroni correction was used to assess differences among the three groups, and a value of p < 0.017 was considered statistically significant.</p> <p>Results</p> <p>There were no differences between AN-R patients and controls in the iFGF23 and 1,25-(OH)<sub>2</sub>D levels. In AN-BP patients, the iFGF23 level (41.3 pg/ml; range, 6.1–155.5 pg/ml) was significantly higher than in controls (3.8 pg/ml; range, not detected-21.3 pg/ml; p = 0.001), and the 1,25-(OH)<sub>2</sub>D was significantly lower in AN-BP patients (7.0 pg/ml; range, 4.2–33.7 pg/ml) than in controls (39.7 pg/ml; range, 6.3–58.5 pg/ml; p = 0.015). No differences in plasma 25-OHD levels were observed among the groups.</p> <p>Conclusion</p> <p>This preliminary study is the first to show that plasma iFGF23 levels are increased in AN-BP patients, and that these elevated plasma FGF23 levels might be related to the decrease in plasma 1,25-(OH)<sub>2</sub>D levels.</p
- …