5,924 research outputs found

    Stabilization of collapse and revival dynamics by a non-Markovian phonon bath

    Full text link
    Semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction [1-3]. In contrast with atom optics, dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle towards stable performances in experiments and applications [4]. In this paper we show that this is not necessarily the case. In fact, the memory of the environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath has a stabilizing effect on the coherent QD cavity-quantum electrodynamics (cQED) by inhibiting irregular oscillations and boosting regular collapse and revival patterns. For low photon numbers we predict QD dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.Comment: 5 pages, 4 figure

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.

    Covariant transverse-traceless projection for secondary gravitational waves

    Full text link
    Second-order tensor modes induced by nonlinear gravity are a key component of the cosmological background of gravitational waves. A detection of this background would allow us to probe the primordial power spectrum at otherwise inaccessible scales. Usually, the energy density of these gravitational waves is studied within perturbation theory in a particular gauge -- a connection between our physical spacetime and a fictitious background. It is a widely recognized issue that the second-order, scalar-induced gravitational waves are gauge dependent. This issue arises because they are not well-defined as tensors in the physical spacetime at second-order and are thus unphysical. In this paper, we propose the covariant transverse-traceless projection of the extrinsic curvature to study cosmological gravitational waves on a spatial hypersurface. We define a new energy density which is based purely on spacetime tensors, independent of perturbation theory, and thus is gauge invariant by definition. We show that, in the context of second-order perturbation theory, this new energy density contains only propagating modes in the constant-time hypersurface in the Newtonian gauge. We further show that we can recover the same gravitational waves after a transformation to the synchronous gauge, so long as we correctly identify the Newtonian hypersurface.Comment: 14 pages, 2 figure, major revisio

    Strong lensing in the Einstein-Straus solution

    Full text link
    We analyse strong lensing in the Einstein-Straus solution with positive cosmological constant. For concreteness we compare the theory to the light deflection of the lensed quasar SDSS J1004+4112.Comment: 14 pages, 3 figures, 5 tables. To the memory of J\"urgen Ehlers v2 contains a note added during publication in GRG and less typo

    Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn5_5 probed by In-NQR

    Full text link
    We report on a pressure-induced evolution of exotic superconductivity and spin correlations in CeIr(In1x_{1-x}Cdx_{x})5_5 by means of In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum and nuclear-spin-lattice-relaxation rate 1/T11/T_1 have revealed that antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants, but superconductivity is suddenly induced at TcT_c = 0.7 and 0.9 K at 2.34 and 2.75 GPa, respectively. The unique superconducting characteristics with a large fraction of the residual density of state at the Fermi level that increases with TcT_c differ from those for anisotropic superconductivity mediated by antiferromagnetic correlations. By incorporating the pressure dependence of the NQR frequency pointing to the valence change of Ce, we suggest that unconventional superconductivity in the CeIr(In1x_{1-x}Cdx_{x})5_5 system may be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter

    Morphological Diversity between Culture Strains of a Chlorarachniophyte, Lotharella globosa

    Get PDF
    Chlorarachniophytes are marine unicellular algae that possess secondary plastids of green algal origin. Although chlorarachniophytes are a small group (the phylum of Chlorarachniophyta contains 14 species in 8 genera), they have variable and complex life cycles that include amoeboid, coccoid, and/or flagellate cells. The majority of chlorarachniophytes possess two or more cell types in their life cycles, and which cell types are found is one of the principle morphological criteria used for species descriptions. Here we describe an unidentified chlorarachniophyte that was isolated from an artificial coral reef that calls this criterion into question. The life cycle of the new strain includes all three major cell types, but DNA barcoding based on the established nucleomorph ITS sequences showed it to share 100% sequence identity with Lotharella globosa. The type strain of L. globosa was also isolated from a coral reef, but is defined as completely lacking an amoeboid stage throughout its life cycle. We conclude that L. globosa possesses morphological diversity between culture strains, and that the new strain is a variety of L. globosa, which we describe as Lotharella globosa var. fortis var. nov. to include the amoeboid stage in the formal description of L. globosa. This intraspecies variation suggest that gross morphological stages maybe lost rather rapidly, and specifically that the type strain of L. globosa has lost the ability to form the amoeboid stage, perhaps recently. This in turn suggests that even major morphological characters used for taxonomy of this group may be variable in natural populations, and therefore misleading
    corecore