429 research outputs found

    Improving signal stability in a multi-electrode array (MEA) system for cardiac biopsies

    Get PDF
    This work evaluates the performance of a microelectrode array (MEA) to be used in a specific platform dedicated for measuring field potentials of small human cardiac samples. A test bench has been developed to characterize the electrodes by measuring their impedance as well as to modify their characteristic curve using a replatinization process, where black platinum is deposited on the indicated areas of the MEA flex-pcb. This set-up consists of the array of microelectrodes made of gold, together with its corresponding electronic adapter board, a potentiostat and an electrochemical interface. Phosphate buffered saline (PBS), which is commonly considered for this type of analysis, has been used for impedance characterization. Initially, the impedance presents a highly variable behavior at different frequencies as well as between the different channels of the array. Once the platinization process has been carried out, the impedance in all the recording channels is very similar and has decreased over a large part of the frequency range under study. A complete electrical model of the electrodes has been proposed and analyzed, achieving better results by including the mathematical constant phase element (CPE) associated with capacitive behavior (model fitting error < 2%). Finally, the characterization of the different noise contributions has been carried out. Based on the obtained results, it can be concluded that the evaluated system allows the recording of field potential signals from small human cardiac tissues

    Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas

    Get PDF
    Esta publicación detalla los experimentos realizados para la clonación de un ADNc que codifica una nueva metaloproteasa de matriz extracelular a partir de una biblioteca de ADNc procedente de un carcinoma mamario. Este trabajo es de gran interés en la investigación del cáncer, ya que describe la identificación de una nueva colagenasa en los carcinomas mamarios proponiendo un posible papel en el proceso tumoral. Hay evidencia de que las metaloproteasas participan en el proceso de degradación proteolítica de los diferentes componentes de la membrana basal, favoreciendo así la invasión tumoral y las metástasis. El ADNc de la colagenasa-3 se expresó en un sistema de virus vaccinia, y la proteína recombinante fue capaz de degradar los colágenos fibrilares, lo que apoya la hipótesis de que el ADNc aislado codifica para una colagenasa auténtica. El análisis por Northern blot del ARN de tejidos normales y patológicos demostró la existencia de tres especies diferentes de ARNm en los tumores de mama, que parecen ser el resultado de la utilización de distintos sitios de poliadenilación presentes en la región 3'-no codificante del gen. Por el contrario, no se detectó ARNm de la colalagenasa-3 por Northern blot ni por PCR en otros tejidos humanos como mama normal, fibroadenomas mamarios, hígado, placenta, ovario, útero, próstata y glándula parótida. Sobre la base del aumento de la expresión de la colagenasa-3 en los carcinomas de mama y la ausencia de expresión detectable en los tejidos normales, se propone un posible papel de esta metaloproteinasa en el proceso tumoral

    Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain

    Get PDF
    BACKGROUND: We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. RESULTS: Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro-urokinase-type plasminogen activator (pro-uPA). Northern blot analysis showed that polyserase-3 exhibits a unique expression pattern among human polyserases, being predominantly detected in testis, liver, heart and ovary, as well as in several tumor cell lines. CONCLUSION: These findings contribute to define the growing group of human polyserine proteases composed at present by three different proteins. All of them share a complex structural design with several catalytic units in a single polypeptide but also show specific features in terms of enzymatic properties, expression patterns and post-translational maturation mechanisms

    Loss of genes implicated in gastric function during platypus evolution

    Get PDF
    Several genes implicated in food digestion have been deleted or inactivated in platypus. This loss perhaps explains the anatomical and physiological differences in the gastrointestinal tract between monotremes and other vertebrates and provides insights into platypus genome evolution

    LPS Responsiveness and Neutrophil Chemotaxis In Vivo Require PMN MMP-8 Activity

    Get PDF
    We identify matrix metalloproteinase (MMP)-8, the polymorphonuclear (PMN) leukocyte collagenase, as a critical mediator initiating lipopolysaccharide (LPS)-responsiveness in vivo. PMN infiltration towards LPS is abrogated in Mmp8-null mice. MMP-8 cleaves LPS-induced CXC chemokine (LIX) at Ser(4)∼Val(5) and Lys(79)∼Arg(80). LIX bioactivity is increased upon N-terminal cleavage, enhancing intracellular calcium mobilization and chemotaxis upon binding its cognate receptor, CXCR2. As there is no difference in PMN chemotaxis in Mmp8-null mice compared with wild-type mice towards synthetic analogues of MMP-8-cleaved LIX, MMP-8 is not essential for extravasation or cell migration in collagenous matrices in vivo. However, with biochemical redundancy between MMPs 1, 2, 9, and 13, which also cleave LIX at position 4∼5, it was surprising to observe such a markedly reduced PMN infiltration towards LPS and LIX in Mmp8-/- mice. This lack of physiological redundancy in vivo identifies MMP-8 as a key mediator in the regulation of innate immunity. Comparable results were found with CXCL8/IL-8 and CXCL5/ENA-78, the human orthologues of LIX. MMP-8 cleaves CXCL8 at Arg(5)-Ser(6) and at Val(7)-Leu(8) in CXCL5 to activate respective chemokines. Hence, rather than collagen, these PMN chemoattractants are important MMP-8 substrates in vivo; PMN-derived MMP-8 cleaves and activates LIX to execute an in cis PMN-controlled feed-forward mechanism to orchestrate the initial inflammatory response and promote LPS responsiveness in tissue

    Inhibition of intermediate-conductance calcium-activated K channel (KCa3.1) and fibroblast mitogenesis by a-linolenic acid and alterations of channel expression in the lysosomal storage disorders, fabry disease, and niemann pick C

    Get PDF
    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that a-linolenic acid (a-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The a-LA-rich linseed oil and ¿-LA-rich borage oil at 0.5% produce channel inhibition while a-LA/¿-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, a-LA, and a-LA/¿-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression
    corecore