65 research outputs found
Finite Element Analysis of Elastomeric Seals for LIDS
Objective: Create a means of evaluating seals w/o prototypes. Motivation: Cost Prototype 54" seal approx.30k per year. Development time: 6 months lead time for a new seal design Many designs per day (solution time <1 minute) Understanding: Difficult to experimentally measure strains, contact pressure profile, stresses, displacement
Further Characterization of an Active Clearance Control Concept
A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in
High Temperature Evaluation of an Active Clearance Control System Concept
A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal
Evaluation of an Active Clearance Control System Concept
Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error)
High Temperature Investigations into an Active Turbine Blade Tip Clearance Control Concept
System studies have shown the benefits of reducing blade tip clearances in modern turbine engines. Minimizing blade tip clearances throughout the engine will contribute materially to meeting NASA s Ultra-Efficient Engine Technology (UEET) turbine engine project goals. NASA GRC is examining two candidate approaches including rub-avoidance and regeneration which are explained in subsequent slides
Material Properties of Three Candidate Elastomers for Space Seals Applications
A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein
Experimental Investigation of Elastomer Docking Seal Compression Set, Adhesion, and Leakage
A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. An investigation of the compression set of two seals mated in a seal-on-seal configuration and the force required to separate the two seals after periods of mating was conducted. The leakage rates of seals made from two silicone elastomer compounds, S0383-70 and S0899-50, configured in seal-on-seal mating were quantified. The test specimens were sub-scale seals with representative cross-sections and a 12 inch outside diameter. The leakage rate of the seals manufactured from S0899-50 was higher than that of the seals made from S0383-70 by a factor of 1.8. Similarly, the adhesion of the 50 durometer elastomer was significantly higher than that of the 70 durometer compound. However, the compression set values of the S0899-50 material were observed to be significantly lower than those for the S0383-70
Overview of LIDS Docking and Berthing System Seals
This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule
Characteristics of Elastomer Seals Exposed to Space Environments
A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. The Low Impact Docking System (LIDS) is being designed to operate using a seal-on-seal configuration in numerous space environments, each having unique exposures to temperature, solar radiation, reactive elements, debris, and mission duration. As the LIDS seal is likely to be manufactured from an elastomeric material, performance evaluation of elastomers after exposure to atomic oxygen (AO) and ultraviolet radiation (UV) was conducted, of which the work presented herein was a part. Each of the three candidate silicone elastomer compounds investigated, including Esterline ELA-SA-401, and Parker Hannifin S0383-70 and S0899-50, was characterized as a low outgassing compound, per ASTM E595, having percent total mass loss (TML) less than 1.0 percent and collected volatile condensable materials (CVCM) less than 0.1 percent. Each compound was compatible with the LIDS operating environment of -50 to 50 C. The seal characteristics presented include compression set, elastomer-to-elastomer adhesion, and o-ring leakage rate. The ELA-SA-401 compound had the lowest variation in compression set with temperature. The S0383-70 compound exhibited the lowest compression set after exposure to AO and UV. The adhesion for all of the compounds was significantly reduced after exposure to AO and was further decreased after exposure to AO and UV. The leakage rates of o-ring specimens showed modest increases after exposure to AO. The leakage rates after exposure to AO and UV were increased by factors of up to 600 when compared to specimens in the as-received condition
Accidental Outcomes Guide Punishment in a “Trembling Hand” Game
How do people respond to others' accidental behaviors? Reward and punishment for an accident might depend on the actor's intentions, or instead on the unintended outcomes she brings about. Yet, existing paradigms in experimental economics do not include the possibility of accidental monetary allocations. We explore the balance of outcomes and intentions in a two-player economic game where monetary allocations are made with a “trembling hand”: that is, intentions and outcomes are sometimes mismatched. Player 1 allocates $10 between herself and Player 2 by rolling one of three dice. One die has a high probability of a selfish outcome, another has a high probability of a fair outcome, and the third has a high probability of a generous outcome. Based on Player 1's choice of die, Player 2 can infer her intentions. However, any of the three die can yield any of the three possible outcomes. Player 2 is given the opportunity to respond to Player 1's allocation by adding to or subtracting from Player 1's payoff. We find that Player 2's responses are influenced substantially by the accidental outcome of Player 1's roll of the die. Comparison to control conditions suggests that in contexts where the allocation is at least partially under the control of Player 1, Player 2 will punish Player 1 accountable for unintentional negative outcomes. In addition, Player 2's responses are influenced by Player 1's intention. However, Player 2 tends to modulate his responses substantially more for selfish intentions than for generous intentions. This novel economic game provides new insight into the psychological mechanisms underlying social preferences for fairness and retribution
- …