63 research outputs found
Expression of a Novel Antimicrobial Peptide Penaeidin4-1 in Creeping Bentgrass (Agrostis stolonifera L.) Enhances Plant Fungal Disease Resistance
BACKGROUND: Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. METHODOLOGY/PRINCIPAL FINDINGS: The antimicrobial peptide - Penaeidin4-1 (Pen4-1) from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4). Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. CONCLUSION/SIGNIFICANCE: Our results demonstrate the effectiveness of Pen4-1 in a perennial species against fungal pathogens and suggest a potential strategy for engineering broad-spectrum fungal disease resistance in crop species
Doyne lecture 2016:intraocular health and the many faces of inflammation
Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses
Individual measurements of angiotensin II concentrations in aqueous humor of the eye
The presence of constituents of the renin-angiotensin system (RAS) in ocular tissues and fluids suggests this system is involved in ocular physiology. Angiotensin II (AngII) is the main biological effector of the system, so we measured AngII in plasma and in aqueous humor of the anterior ocular chamber of patients undergoing cataract extraction. Untreated normotensive patients were compared with arterial hypertensive patients taking either diuretics which stimulate the RAS or angiotensin converting enzyme (ACE) inhibitors which reduce the production of AngII. Plasma levels of AngII were higher in patients on diuretics (5.46 +/- 1.04 fmol/ml; mean +/- SEM) than in untreated cataract patients (2.28 +/- 0.32 fmol/ml, p < 0.02), and were very low with ACE inhibitors (0.51 +/- 0.18 fmol/ml). In aqueous humor, AngII was measurable in 7 of 11 patients on diuretics (median 1.1 fmol/ml), and in 6 of 16 normotensive patients (median < 0.55 fmol/ml), but not in aqueous humor of 4 patients receiving enalapril or captopril. These results demonstrate the presence of AngII in the eye but do not exclude either its sequestration in the eye or local production. The possibility of individual measurements of intraocular AngII will permit more precise determination of its role in future studies
- …