65 research outputs found

    Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy

    Get PDF
    Understanding the ionic channel network of proton exchange membranes that dictate fuel cell performance is crucial when developing proton exchange membrane fuel cells. However, it is difficult to characterize this network because of the complicated nanostructure and structure changes that depend on water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution with nano-spatial resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage. Herein, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is derived from the principle of EFM. This model focusses on free charge movement on the membrane based on the force gradient variation between the tip and the membrane surface. To verify the numerical approximation model, the phase lag of dry and wet Nafion is measured with stepwise changes to the bias voltage. Based on the model, the variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is related to the ionic channel network, is calculated using the model. The difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Author keywords1

    Non-monotonic quantum to classical transition in multiparticle interference

    Full text link
    We experimentally demonstrate the non-monotonic dependence of genuine many-particle interference signals on the particles' mutual distinguishability. Our theoretical analysis shows that such non-monotonicity is a generic feature of the quantum to classical transition in multiparticle correlation functions of more than two particles

    Observation of Young's Double-Slit Interference with the Three-Photon N00N State

    Full text link
    Spatial interference of quantum mechanical particles exhibits a fundamental feature of quantum mechanics. A two-mode entangled state of N particles known as N00N state can give rise to non-classical interference. We report the first experimental observation of a three-photon N00N state exhibiting Young's double-slit type spatial quantum interference. Compared to a single-photon state, the three-photon entangled state generates interference fringes that are three times denser. Moreover, its interference visibility of 0.49±0.090.49 \pm 0.09 is well above the limit of 0.1 for spatial super-resolution of classical origin. The demonstration of spatial quantum interference by a N00N state composed of more than two photons represents an important step towards applying quantum entanglement to technologies such as lithography and imaging
    corecore