5 research outputs found

    Hemoglobin LjGlb1-1 is involved in nodulation and regulated the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis

    Get PDF
    Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia–legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5′-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo. The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels

    Ectopic or Over-Expression of Class 1 Phytoglobin Genes Confers Flooding Tolerance to the Root Nodules of Lotus japonicus by Scavenging Nitric Oxide

    No full text
    Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS

    Reactive Sulfur Species Interact with Other Signal Molecules in Root Nodule Symbiosis in Lotus japonicus

    No full text
    Reactive sulfur species (RSS) function as strong antioxidants and are involved in various biological responses in animals and bacteria. Few studies; however, have examined RSS in plants. In the present study, we clarified that RSS are involved in root nodule symbiosis in the model legume Lotus japonicus. Polysulfides, a type of RSS, were detected in the roots by using a sulfane sulfur-specific fluorescent probe, SSP4. Supplying the sulfane sulfur donor Na2S3 to the roots increased the amounts of both polysulfides and hydrogen sulfide (H2S) in the roots and simultaneously decreased the amounts of nitric oxide (NO) and reactive oxygen species (ROS). RSS were also detected in infection threads in the root hairs and in infected cells of nodules. Supplying the sulfane sulfur donor significantly increased the numbers of infection threads and nodules. When nodules were immersed in the sulfane sulfur donor, their nitrogenase activity was significantly reduced, without significant changes in the amounts of NO, ROS, and H2S. These results suggest that polysulfides interact with signal molecules such as NO, ROS, and H2S in root nodule symbiosis in L. japonicus. SSP4 and Na2S3 are useful tools for study of RSS in plants

    Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence

    No full text
    33 Pags.- 1 Tabl.- 14 Figs. The definitive version is available at: https://academic.oup.com/pcpThe class 1 phytoglobin, LjGlb1-1, is expressed in various tissues of the model legume Lotus japonicus, where it may play multiple functions by interacting with nitric oxide (NO). One of such functions is the onset of a proper symbiosis with Mesorhizobium loti resulting in the formation of actively N2-fixing nodules. Stable overexpression lines (Ox1 and Ox2) of LjGlb1-1 were generated and phenotyped. Both Ox lines showed reduced NO levels in roots and enhanced nitrogenase activity in mature and senescent nodules relative to the wild-type (WT). Physiological and cytological observations indicated that overexpression of LjGlb1-1 delayed nodule senescence. The application to WT nodules of the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) or the phytohormones abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) repressed nitrogenase activity, induced the expression of three senescence-associated genes and caused cytological changes evidencing nodule senescence. These effects were almost completely reverted by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Our results reveal that overexpression of LjGlb1-1 improves the activity of mature nodules and delays nodule senescence in the L.japonicus–M.loti symbiosis. These beneficial effects are probably mediated by the participation of LjGlb1-1 in controlling the concentration of NO that may be produced downstream in the phytohormone signaling pathway in nodules.Open Partnership Joint Projects of the Japanese Society for the Promotion of Science (JSPS) Bilateral Joint Research Projects (Japan) and National Institute for Basic Biology (NIBB) Collaborative Research Program [16-305 and 17-309, Japan to T.U.]; the Ministry of Economy and Competitiveness [AGL2017-85775-R, Spain to M.B.]; and JSPS KAKENHI Research Fellows [JP18J11872, Japan to M.F.].Peer reviewe
    corecore