7 research outputs found

    Determination of the phthalocyanine textile dye, reactive turquoise blue, by electrochemical techniques

    No full text
    Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent

    Determinação eletroanalítica de corante reativo presente como contaminante em proteínas purificadas por cromatografia de afinidade Electroanalytical determination of a reactive dye currently used in affinity chromatography for protein purificaton

    No full text
    <abstract language="eng">Procion Green HE-4BD is a reactive dye currently used in affinity purification, and commonly present as a contaminant in the final biological preparation. An assay method is described to determine trace amounts of the dye in the presence of human serum albumin(HSA) and leakage from agarose as affinity sorbent by cathodic stripping voltammetry. The proposed method is based on the reductive peak at -0.55V in B-R buffer pH 3 (E=0V and t= 240s), obtained when samples of HSA 2% (m/v) containing dye concentrations in sodium hydroxide pH 12 are submitted to a heating time of 330 min at 80 ºC. Linear calibration curves can be obtained for RG19 dye concentrations from 5x10-9 mol L-1 to 8 x10-8 mol L-1. The detection limit (3sigma) is 1x10-9 mol L-1

    An optical processor for data error detection and correction using a (9,5) binary code generator and the syndrome decoding process

    No full text
    Based on a-SiC:H technology, we present an optical processor for data error detection and correction using a suitable (9,5) Hamming binary code generator and the syndrome decoding process. The optical processor consists of an a-SiC:H double p-i-n photodetector with two ultraviolet light biased gates. The relationship between the optical inputs (transmitted data) and the corresponding output levels (the received data) is established and decoded. Results show that under irradiation the device acts as an active filter. Under front irradiation the magnitude of the short wavelength is quenched and in the long wavelength range is enlarged, while the opposite happens under back lighting. Parity bits are generated and stored simultaneously with the data word. Parity logic operations are performed and checked for errors together. An all-optical processor for error detection and correction is presented to provide an experimental demonstration of this fault tolerant reversible system. Two original coloured string messages, having 4- and 5- bits, respectively, are analyzed and the transmitted 7- or 9- bit string, the parity matrix, the encoding and decoding processes, are explained. The design of SiC syndrome generators for error correction is tested.info:eu-repo/semantics/publishedVersio

    Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-x)Ir O-x(2) electrodes

    No full text
    The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed
    corecore