28 research outputs found

    Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin: Effects of cell volume, morphology, rheology and hemolysis

    Get PDF
    Alpha-hemolysin (HlyA) of uropathogenic strains of Escherichia coli irreversibly binds to human erythrocytes (RBCs) and triggers activation of ATP release and metabolic changes ultimately leading to hemolysis. We studied the regulation of extracellular ATP (ATPe) of RBCs exposed to HlyA. Luminometry was used to assess ATP release and ATPe hydrolysis, whereas changes in cell volume and morphology were determined by electrical impedance, ektacytometry and aggregometry. Exposure of RBCs to HlyA induced a strong increase of [ATPe] (3–36-fold) and hemolysis (1–44-fold), partially compensated by [ATPe] hydrolysis by ectoATPases and intracellular ATPases released by dead cells. Carbenoxolone, a pannexin 1 inhibitor, partially inhibited ATP release (43–67%). The un-acylated toxin ProHlyA and the deletion analog HlyA∆914-936 were unable to induce ATP release or hemolysis. For HlyA treated RBCs, a data driven mathematical model showed that simultaneous lytic and non-lytic release mainly governed ATPe kinetics, while ATPe hydrolysis became important after prolonged toxin exposure. HlyA induced a 1.5-fold swelling, while blocking this swelling reduced ATP release by 77%. Blocking ATPe activation of purinergic P2X receptors reduced swelling by 60–80%. HlyA-RBCs showed an acute 1.3–2.2-fold increase of Ca 2+ i, increased crenation and externalization of phosphatidylserine. Perfusion of HlyA-RBCs through adhesion platforms showed strong adhesion to activated HMEC cells, followed by rapid detachment. HlyA exposed RBCs exhibited increased sphericity under osmotic stress, reduced elongation under shear stress, and very low aggregation in viscous media. Overall results showed that HlyA-RBCs displayed activated ATP release, high but weak adhesivity, low deformability and aggregability and high sphericity.Fil: Leal Denis, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica; ArgentinaFil: Lefevre, S.D.. Inserm; Francia. Université Paris Diderot - Paris 7; Francia. Université de la Réunion; Francia. Université des Antilles; Francia. Universite de Paris. Institut National de la Transfusion Sanguine.; FranciaFil: Alvarez, Cora Lilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Lauri, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Enrique, Nicolás Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas; ArgentinaFil: Rinaldi, Debora Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Gonzalez-Lebrero, Rodolfo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Vecchio Dezillio, Leandro Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas; ArgentinaFil: Espelt, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Stringa, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Muñoz Garay, C.. Universidad Nacional Autónoma de México; MéxicoFil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas; ArgentinaFil: Ostuni, M.A.. Inserm; Francia. Université Paris Diderot - Paris 7; Francia. Université de la Réunion; Francia. Université des Antilles; Francia. Universite de Paris. Institut National de la Transfusion Sanguine.; FranciaFil: Herlax, Vanesa Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Schwarzbaum, Pablo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin

    Study of the nucleotide-binding domain 1 of the human transporter protein MRP6

    No full text
    Multidrug-resistance-associated protein 6 (MRP6/ABCC6) is a protein belonging to the ABC transporter family. Proteins in this family share many characteristic structural features, including two membrane-spanning domains and two nucleotide-binding domains (NBD1 and NBD2), that function cooperatively but not equally bind and hydrolyze ATP. The MRP6 protein is structurally and functionally poorly characterized. Previously, we showed, by NMR spectroscopy, that a fragment of MRP6-NBD1 presents helical structure and fluorescence experiments demonstrated that peptide binds ATP. These data suggested that the study on selected regions could be a valid approach to define the structure of MRP6. In the present study, to better characterize MRP6-NBD1, we report data of CD spectroscopy, nucleotide binding and ATP hydrolysis on two different polypeptides, one corresponding to the full-length NBD1 domain (residues from Asp-627 to Leu-851) and the other is a shorter polypeptide (residues from Arg-648 to Thr-805) without some key residues. We report that both polypeptides are highly structured in aqueous buffer and in 20% trifluoroethanol showing considerable helical and beta?-structure content. The ATP hydrolysis activity is exhibited only by the full-length NBD1 domain. Comparison between our findings and the structurally well characterized MRP1-NBD1 supports the role of H-loop for the ATP hydrolysis and of A-loop in stabilizing the ATP binding

    Metabolic analysis of human follicular fluid by 1H NMR spectroscopy

    No full text
    The correct evaluation of oocyte quality is one of the crucial aspects to succeed in assisted reproductive techniques. Non mature or poor quality oocytes will not be fertilized or will give rise to embryo with low implantation potential. Morphological evaluation is still the primary method of embryo estimation during in vitro fertilization (IVF) cycles although with modest predictive value [1]. Follicular fluid (FF) is the in-vivo environment where the oocytes and, later, the embryos develop; contains metabolites important for oocyte growth and development and its composition may indicate embryo viability and oocyte quality. FF is a superfluous and easily available product which is aspirated together with oocyte and represent an optimal source of potential biomarkers of oocyte quality [2]. NMR-based metabolomics of biological fluids is widely applied as NMR is capable of simultaneously detecting a wide variety of metabolites with accuracy and reproducibility with quick responses and minimal sample preparation. The NMR metabolic profile of human FF was studied both from healthy oocyte donors [3] and women affcted by polycystic ovary syndrome [4]. NMR metabolomics was used to determine the relationship between FF metabolite composition, oocyte developmental potential and embryo viability [5]. NMR-based metabolic profiling of FF and plasma was used in a pilot study on IVF patients [6]. The aim of this study is to verify if NMR metabolomics can really be used for identifying suitable biomarkers in FF to select optimal quality oocytes with competence to fertilization, embryo development and, hopefully, positive pregnancy. 1.Singh R, Sinclair KD (2007) Theriogenology 68S, S56-S62 2.Revelli A et al. (2009) Reprod Biol Endocrinol 7:40 3.Piñero-Sagredo E et al (2010) NMR Biomed 23, 485-495 4.Arya BK et al (2012) Med Hypotheses 78(4), 475-478 5.Wallace M et al (2012) Fertil Steril 97(5),1078-1084.e8 6.McRae C et al (2012) Fertil Steril 98(5),1449-1457.e

    Structural characterization of the transmembrane segments of the mitochondrial oxoglutarate carrier (OGC) by NMR spectroscopy

    No full text
    Abstract. The oxoglutarate carrier (OGC) is a member of the mitochondrial carrier protein superfamily, which includes the ADP/ATP carrier and other functionally characterized members, and exchanges cytosolic malate for 2-oxoglutarate from the mitochondrial matrix. By means of CD and NMR spectroscopy, we previously characterized four synthetic peptides containing transmembrane segments (TMSs) I, II, V and VI of the OGC, respectively, in TFE/water mixtures and SDS micelles. Here, we present data on the remaining transmembrane segments of OGC obtained by performing CD and NMR studies on peptides corresponding to TMS-III and TMS-IV. In TFE/water, alpha-helical structures were found for these peptides in the L121-R146 and T187-S201 regions, respectively. We also evaluated the compatibility between the helical structures of our peptides and a homology model of the OGC based on the available X-ray structure of the ATP/ADP carrier. Key words: NMR; mitochondrial carriers; mitochondrial oxoglutarate carrier; structure; transmembrane segments
    corecore