100 research outputs found

    Band-gap solitons in nonlinear optically-induced lattices

    Full text link
    We introduce novel optical solitons that consist of a periodic and a spatially localized components coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a gap soliton supported by the optically-induced nonlinear grating. We find different types of these band-gap composite solitons and demonstrate their dynamical stability.Comment: 4 pages, 5 figure

    Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates

    Full text link
    We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schr\"odinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show that spatial inhomogeneity strongly affects their motion, stability, and interaction, and that current technology suffices for their creation and control in ultracold trapped gases. The effects of controllably different interparticle scattering lengths, and stability against three-dimensional deformations, are also examined.Comment: 5 pages, 5 figure

    Modulational instability of spinor condensates

    Full text link
    We demonstrate, analytically and numerically, that the ferromagnetic phase of the spinor Bose-Einstein condenstate may experience modulational instability of the ground state leading to a fragmentation of the spin domains. Together with other nonlinear effects in the atomic optics of ultra-cold gases (such as coherent photoassociation and four-wave mixing) this effect provides one more analogy between coherent matter waves and light waves in nonlinear optics.Comment: 4 pages, 4 figures. Accepted for Phys. Rev. A Rapid Communication

    Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation

    Get PDF
    Bosonic condensates of exciton polaritons (light-matter quasiparticles in a semiconductor) provide a solid-state platform for studies of non-equilibrium quantum systems with a spontaneous macroscopic coherence. These driven, dissipative condensates typically coexist and interact with an incoherent reservoir, which undermines measurements of key parameters of the condensate. Here, we overcome this limitation by creating a high-density exciton-polariton condensate in an optically-induced "box" trap. In this so-called Thomas-Fermi regime, the condensate is fully separated from the reservoir and its behaviour is dominated by interparticle interactions. We use this regime to directly measure the polariton-polariton interaction strength, and reduce the existing uncertainty in its value from four orders of magnitude to within three times the theoretical prediction. The Thomas-Fermi regime has previously been demonstrated only in ultracold atomic gases in thermal equilibrium. In a non-equilibrium exciton-polariton system, this regime offers a novel opportunity to study interaction-driven effects unmasked by an incoherent reservoir.Comment: 11 pages, 5 figure

    Topological phase transition in an all-optical exciton-polariton lattice

    Full text link
    Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.Comment: 7 pages, 4 figure

    Macroscopic superposition states of ultracold bosons in a double-well potential

    Full text link
    We present a thorough description of the physical regimes for ultracold bosons in double wells, with special attention paid to macroscopic superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick Hamiltonian of up to eight single particle modes to study these MSs, solving the Hamiltonian with a combination of numerical exact diagonalization and high-order perturbation theory. The MS is between left and right potential wells; the extreme case with all atoms simultaneously located in both wells and in only two modes is the famous NOON state, but our approach encompasses much more general MSs. Use of more single particle modes brings dimensionality into the problem, allows us to set hard limits on the use of the original two-mode LMG model commonly treated in the literature, and also introduces a new mixed Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Symmetry-breaking Effects for Polariton Condensates in Double-Well Potentials

    Get PDF
    We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including, e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that does not appear in the atomic condensate case is that the bifurcation for attractive interactions is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are corroborated by direct numerical simulations examining the dynamics of the system in the unstable regime.MICINN (Spain) project FIS2008- 0484

    Structure and stability of two-dimensional Bose-Einstein condensates under both harmonic and lattice confinement

    Get PDF
    In this work, we study pancake-shaped Bose-Einstein condensates confined by both a cylindrically symmetric harmonic potential and an optical lattice with equal periodicity in two orthogonal directions. We first identify the spectrum of the underlying two-dimensional linear problem through multiple-scale techniques. Then, we use the results obtained in the linear limit as a starting point for a nonlinear existence and stability analysis of the lowest energy states, emanating from the linear ones, in the nonlinear problem. Two-parameter continuations of these states are performed for increasing nonlinearity and optical lattice strengths, and their instabilities and temporal evolution are investigated. It is found that the ground state as well as one of the excited states are either stable or weakly unstable for both attractive and repulsive interatomic interactions
    corecore