11 research outputs found
High-performance flexible energy storage and harvesting system for wearable electronics.
This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices
Recommended from our members
EcoBlock: Grid Impacts, Scaling, and Resilience
Widespread deployment of EcoBlocks has the potential to transform today's electricity system into one that is more resilient, flexible, efficient and sustainable. In this vision, the system will consist of self- su cient, renewable-powered, block-scale entities that can deliberately adjust their net power exchange and can optimize performance, maintain stability, support each other, or disconnect entirely from the grid as needed. This report is intended as an independent analysis of the potential relationships, both constructive and adverse, between EcoBlocks and the grid
Flexible and stretchable power sources for wearable electronics.
Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries
Recommended from our members
Printed and Flexible Systems for Solar Energy Harvesting
Emerging wireless and flexible electronic systems such as wearable devices and sensor networks call for a power source that is sustainable, reliable, has high power density, and can be integrated into a flexible package at low cost. These demands can be met using photovoltaic systems, consisting of solar modules for energy harvesting, battery storage to overcome variations in solar module output or load, and often power electronics to regulate voltages and power flows. A great deal of research in recent years has focused on the development of high-performing materials and architectures for individual components such as solar cells and batteries. However, there remains a need for co-design and integration of these components in order to achieve complete power systems optimized for specific applications. To fabricate these systems, printing techniques are of great interest as they can be performed at low temperatures and high speeds and facilitate customization of the components.This thesis discusses the development of printed and flexible photovoltaic power systems, spanning both device-level and system-level design. Photovoltaic cells and multi-cell modules are designed and manufactured using solution-processed organic materials. The use of carbon nanotube films as a flexible, low-cost, solution-processed transparent electrode for photovoltaics is investigated. Then, photovoltaic modules are integrated with batteries into energy harvesting and storage systems with multiple power levels and form factors, optimized to deliver power to loads such as wearable medical sensors. The energy collecting potentials of these systems are evaluated under indoor and outdoor lighting conditions. Designing the solar module maximum power point to match the battery voltage, as well as optimizing load characteristics such as duty cycle, are shown to enable power systems with long-term wireless operation and high efficiency. Finally, screen-printed passive components are developed and demonstrated in a hybrid flexible voltage regulator circuit. In particular, high-quality printed spiral inductors satisfactory for power electronics applications are achieved through optimization of the geometry and fabrication. Overall, the high-performance devices and integrated system designs demonstrated here have the potential for significant impact in the areas of flexible, portable and large-area electronics
Recommended from our members
EcoBlock: Grid Impacts, Scaling, and Resilience
Widespread deployment of EcoBlocks has the potential to transform today's electricity system into one that is more resilient, flexible, efficient and sustainable. In this vision, the system will consist of self- su cient, renewable-powered, block-scale entities that can deliberately adjust their net power exchange and can optimize performance, maintain stability, support each other, or disconnect entirely from the grid as needed. This report is intended as an independent analysis of the potential relationships, both constructive and adverse, between EcoBlocks and the grid
Recommended from our members
High-performance flexible energy storage and harvesting system for wearable electronics.
This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices
Recommended from our members
Screen printed passive components for flexible power electronics.
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application