371 research outputs found
Transition to superfluid turbulence governed by an intrinsic parameter
Hydrodynamic flow in both classical and quantum fluids can be either laminar
or turbulent. To describe the latter, vortices in turbulent flow are modelled
with stable vortex filaments. While this is an idealization in classical
fluids, vortices are real topologically stable quantized objects in
superfluids. Thus superfluid turbulence is thought to hold the key to new
understanding on turbulence in general. The fermion superfluid 3He offers
further possibilities owing to a large variation in its hydrodynamic
characteristics over the experimentally accessible temperatures. While studying
the hydrodynamics of the B phase of superfluid 3He, we discovered a sharp
transition at 0.60Tc between two regimes, with regular behaviour at
high-temperatures and turbulence at low-temperatures. Unlike in classical
fluids, this transition is insensitive to velocity and occurs at a temperature
where the dissipative vortex damping drops below a critical limit. This
discovery resolves the conflict between existing high- and low-temperature
measurements in 3He-B: At high temperatures in rotating flow a vortex loop
injected into superflow has been observed to expand monotonically to a single
rectilinear vortex line, while at very low temperatures a tangled network of
quantized vortex lines can be generated in a quiescent bath with a vibrating
wire. The solution of this conflict reveals a new intrinsic criterion for the
existence of superfluid turbulence.Comment: Revtex file; 5 pages, 2 figure
Instability of vortex array and transitions to turbulent states in rotating helium II
We consider superfluid helium inside a container which rotates at constant
angular velocity and investigate numerically the stability of the array of
quantized vortices in the presence of an imposed axial counterflow. This
problem was studied experimentally by Swanson {\it et al.}, who reported
evidence of instabilities at increasing axial flow but were not able to explain
their nature. We find that Kelvin waves on individual vortices become unstable
and grow in amplitude, until the amplitude of the waves becomes large enough
that vortex reconnections take place and the vortex array is destabilized. The
eventual nonlinear saturation of the instability consists of a turbulent tangle
of quantized vortices which is strongly polarized. The computed results compare
well with the experiments. Finally we suggest a theoretical explanation for the
second instability which was observed at higher values of the axial flow
Opportunities and Challenges in Developing a Cryptosporidium Controlled Human infection Model For Testing antiparasitic agents
Cryptosporidiosis is a leading cause of moderate-to-severe diarrhea in low- and middle-income countries, responsible for high mortality in children younger than two years of age, and it is also strongly associated with childhood malnutrition and growth stunting. There is no vaccine for cryptosporidiosis and existing therapeutic options are suboptimal to prevent morbidity and mortality in young children. Recently, novel therapeutic agents have been discovered through high-throughput phenotypic and target-based screening strategies, repurposing malaria hits, etc., and these agents have a promising preclinical in vitro and in vivo anti
Rotating Superfluid Turbulence
Almost all studies of vortex states in helium II have been concerned with
either ordered vortex lattices or disordered vortex tangles. This work studies
numerically what happens in the presence of both rotation (which induces order)
and thermal counterflow (which induces disorder). We find a new statistically
steady state in which the vortex tangle is polarized along the rotational axis.
Our results are used to interpret an instability which was discovered
experimentally by Swanson et al. years ago but has been unexplained until now
Integrative DNA Methylation and Gene Expression Analyses Identify DNA Packaging and Epigenetic Regulatory Genes Associated with Low Motility Sperm
In previous studies using candidate gene approaches, low sperm count (oligospermia) has been associated with altered sperm mRNA content and DNA methylation in both imprinted and non-imprinted genes. We performed a genome-wide analysis of sperm DNA methylation and mRNA content to test for associations with sperm function. (NCBI 1788). There was a trend among altered expression of these epigenetic regulatory genes and RPMM DNA methylation class.Using integrative genome-wide approaches we identified CpG methylation profiles and mRNA alterations associated with low sperm motility
Conserving, Distributing and Managing Genetically Modified Mouse Lines by Sperm Cryopreservation
Sperm from C57BL/6 mice are difficult to cryopreserve and recover. Yet, the majority of genetically modified (GM) lines are maintained on this genetic background.Reported here is the development of an easily implemented method that consistently yields fertilization rates of 70+/-5% with this strain. This six-fold increase is achieved by collecting sperm from the vas deferens and epididymis into a cryoprotective medium of 18% raffinose (w/v), 3% skim milk (w/v) and 477 microM monothioglycerol. The sperm suspension is loaded into 0.25 mL French straws and cooled at 37+/-1 degrees C/min before being plunged and then stored in LN(2). Subsequent to storage, the sperm are warmed at 2,232+/-162 degrees C/min and incubated in in vitro fertilization media for an hour prior to the addition of oocyte cumulus masses from superovulated females. Sperm from 735 GM mouse lines on 12 common genetic backgrounds including C57BL/6J, BALB/cJ, 129S1/SvImJ, FVB/NJ and NOD/ShiLtJ were cryopreserved and recovered. C57BL/6J and BALB/cByJ fertilization rates, using frozen sperm, were slightly reduced compared to rates involving fresh sperm; fertilization rates using fresh or frozen sperm were equivalent in all other lines. Developmental capacity of embryos produced using cryopreserved sperm was equivalent, or superior to, cryopreserved IVF-derived embryos.Combined, these results demonstrate the broad applicability of our approach as an economical and efficient option for archiving and distributing mice
Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes
discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology
Mitochondrial Localization of ABC Transporter ABCG2 and Its Function in 5-Aminolevulinic Acid-Mediated Protoporphyrin IX Accumulation
Accumulation of protoporphyrin IX (PpIX) in malignant cells is the basis of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy. We studied the expression of proteins that possibly affect ALA-mediated PpIX accumulation, namely oligopeptide transporter-1 and -2, ferrochelatase and ATP-binding cassette transporter G2 (ABCG2), in several tumor cell lines. Among these proteins, only ABCG2 correlated negatively with ALA-mediated PpIX accumulation. Both a subcellular fractionation study and confocal laser microscopic analysis revealed that ABCG2 was distributed not only in the plasma membrane but also intracellular organelles, including mitochondria. In addition, mitochondrial ABCG2 regulated the content of ALA-mediated PpIX in mitochondria, and Ko143, a specific inhibitor of ABCG2, enhanced mitochondrial PpIX accumulation. To clarify the possible roles of mitochondrial ABCG2, we characterized stably transfected-HEK (ST-HEK) cells overexpressing ABCG2. In these ST-HEK cells, functionally active ABCG2 was detected in mitochondria, and treatment with Ko143 increased ALA-mediated mitochondrial PpIX accumulation. Moreover, the mitochondria isolated from ST-HEK cells exported doxorubicin probably through ABCG2, because the export of doxorubicin was inhibited by Ko143. The susceptibility of ABCG2 distributed in mitochondria to proteinase K, endoglycosidase H and peptide-N-glycosidase F suggested that ABCG2 in mitochondrial fraction is modified by N-glycans and trafficked through the endoplasmic reticulum and Golgi apparatus and finally localizes within the mitochondria. Thus, it was found that ABCG2 distributed in mitochondria is a functional transporter and that the mitochondrial ABCG2 regulates ALA-mediated PpIX level through PpIX export from mitochondria to the cytosol
Particles-vortex interactions and flow visualization in He4
Recent experiments have demonstrated a remarkable progress in implementing
and use of the Particle Image Velocimetry (PIV) and particle tracking
techniques for the study of turbulence in He4. However, an interpretation of
the experimental data in the superfluid phase requires understanding how the
motion of tracer particles is affected by the two components, the viscous
normal fluid and the inviscid superfluid. Of a particular importance is the
problem of particle interactions with quantized vortex lines which may not only
strongly affect the particle motion, but, under certain conditions, may even
trap particles on quantized vortex cores. The article reviews recent
theoretical, numerical, and experimental results in this rapidly developing
area of research, putting critically together recent results, and solving
apparent inconsistencies. Also discussed is a closely related technique of
detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
- …