136 research outputs found

    Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR

    Get PDF
    Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR transcriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum

    CutDB: a proteolytic event database

    Get PDF
    Beyond the well-known role of proteolytic machinery in protein degradation and turnover, many specialized proteases play a key role in various regulatory processes. Thousands of highly specific proteolytic events are associated with normal and pathological conditions, including bacterial and viral infections. However, the information about individual proteolytic events is dispersed over multiple publications and is not easily available for large-scale analysis. CutDB is one of the first systematic efforts to build an easily accessible collection of documented proteolytic events for natural proteins in vivo or in vitro. A CutDB entry is defined by a unique combination of these three attributes: protease, protein substrate and cleavage site. Currently, CutDB integrates 3070 proteolytic events for 470 different proteases captured from public archives (such as MEROPS and HPRD) and publications. CutDB supports various types of data searches and displays, including clickable network diagrams. Most importantly, CutDB is a community annotation resource based on a Wikipedia approach, providing a convenient user interface to input new data online. A recent contribution of 568 proteolytic events by several experts in the field of matrix metallopeptidases suggests that this approach will significantly accelerate the development of CutDB content. CutDB is publicly available at

    Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon-13 (<sup>13</sup>C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand.</p> <p>Results</p> <p>Using a large <it>E. coli </it>isotopomer model, different commercially available substrate labeling patterns were tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was found to be dependent upon the desired experimental objective. Many commercially available labels are predicted to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of experimental data was found to be considerably less than anticipated, suggesting that effectiveness of <sup>13</sup>C experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed.</p> <p>Conclusions</p> <p>While <sup>13</sup>C analysis is a useful tool in systems biology, high redundancy in measurements limits the information that can be obtained from each experiment. It is however possible to compute potential limitations before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved.</p

    Comparative Genomics And Functional Analysis Of Rhamnose Catabolic Pathways And Regulons In Bacteria

    Get PDF
    L-rhamnose (Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria

    Genomic encyclopedia of sugar utilization pathways in the Shewanella genus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.</p> <p>Results</p> <p>We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the <it>Shewanella </it>genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across <it>Shewanella </it>species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.</p> <p>Comparison of the reconstructed catabolic pathways with <it>E. coli </it>identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks.</p> <p>Conclusions</p> <p>The reconstructed sugar catabolome in <it>Shewanella </it>spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.</p

    Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides

    Get PDF
    母乳栄養児の腸内におけるビフィズス菌コミュニティー形成には先住効果が大きな影響を及ぼす --ヒトミルクオリゴ糖利用能力の低いビフィズス菌B. breveが優勢となる仕組み--. 京都大学プレスリリース. 2022-07-27.Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota
    corecore