162 research outputs found

    Should we start vasopressors very early in septic shock?

    Get PDF

    Diastolic shock index (DSI) works ... and it could be a quite useful tool

    Get PDF

    Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial

    Get PDF
    BACKGROUND: Fluid boluses are administered to septic shock patients with the purpose of increasing cardiac output as a means to restore tissue perfusion. Unfortunately, fluid therapy has a narrow therapeutic index, and therefore, several approaches to increase safety have been proposed. Fluid responsiveness (FR) assessment might predict which patients will effectively increase cardiac output after a fluid bolus (FR+), thus preventing potentially harmful fluid administration in non-fluid responsive (FR-) patients. However, there are scarce data on the impact of assessing FR on major outcomes. The recent ANDROMEDA-SHOCK trial included systematic per-protocol assessment of FR. We performed a post hoc analysis of the study dataset with the aim of exploring the relationship between FR status at baseline, attainment of specific targets, and clinically relevant outcomes. METHODS: ANDROMEDA-SHOCK compared the effect of peripheral perfusion- vs. lactate-targeted resuscitation on 28-day mortality. FR was assessed before each fluid bolus and periodically thereafter. FR+ and FR- subgroups, independent of the original randomization, were compared for fluid administration, achievement of resuscitation targets, vasoactive agents use, and major outcomes such as organ dysfunction and support, length of stay, and 28-day mortality. RESULTS: FR could be determined in 348 patients at baseline. Two hundred and forty-two patients (70%) were categorized as fluid responders

    Doppler identified venous congestion in septic shock:protocol for an international, multi-centre prospective cohort study (Andromeda-VEXUS)

    Get PDF
    INTRODUCTION: Venous congestion is a pathophysiological state where high venous pressures cause organ oedema and dysfunction. Venous congestion is associated with worse outcomes, particularly acute kidney injury (AKI), for critically ill patients. Venous congestion can be measured by Doppler ultrasound at the bedside through interrogation of the inferior vena cava (IVC), hepatic vein (HV), portal vein (PV) and intrarenal veins (IRV). The objective of this study is to quantify the association between Doppler identified venous congestion and the need for renal replacement therapy (RRT) or death for patients with septic shock. METHODS AND ANALYSIS: This study is a prespecified substudy of the ANDROMEDA-SHOCK 2 (AS-2) randomised control trial (RCT) assessing haemodynamic resuscitation in septic shock and will enrol at least 350 patients across multiple sites. We will include adult patients within 4 hours of fulfilling septic shock definition according to Sepsis-3 consensus conference. Using Doppler ultrasound, physicians will interrogate the IVC, HV, PV and IRV 6-12 hours after randomisation. Study investigators will provide web-based educational sessions to ultrasound operators and adjudicate image acquisition and interpretation. The primary outcome will be RRT or death within 28 days of septic shock. We will assess the hazard of RRT or death as a function of venous congestion using a Cox proportional hazards model. Sub-distribution HRs will describe the hazard of RRT given the competing risk of death. ETHICS AND DISSEMINATION: We obtained ethics approval for the AS-2 RCT, including this observational substudy, from local ethics boards at all participating sites. We will report the findings of this study through open-access publication, presentation at international conferences, a coordinated dissemination strategy by investigators through social media, and an open-access workshop series in multiple languages. TRIAL REGISTRATION NUMBER: NCT05057611.</p

    A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study

    Get PDF
    __Background:__ Persistent hyperlactatemia is particularly difficult to interpret in septic shock. Besides hypoperfusion, adrenergic-driven lactate production and impaired lactate clearance are important contributors. However, clinical recognition of different sources of hyperlactatemia is unfortunately not a common practice and patients are treated with the same strategy despite the risk of over-resuscitation in some. Indeed, pursuing additional resuscitation in non-hypoperfusion-related cases might lead to the toxicity of fluid overload and vasoactive drugs. We hypothesized that two different clinical patterns can be recognized in septic shock patients through a multimodal perfusion monitoring. Hyperlactatemic patients with a hypoperfusion context probably represent a more severe acute circulatory dysfunction, and the absence of a hypoperfusion context is eventually associated with a good outcome. We performed a retrospective analysis of a database of septic shock patients with persistent hyperlactatemia after initial resuscitation. __Results:__ We defined hypoperfusion context by the presence of a ScvO2 < 70%, or a P(cv-a)CO2 ≥6 mmHg, or a CRT ≥4 s together with hyperlactatemia. Ninety patients were included, of whom seventy exhibited a hypoperfusion-related pattern and 20 did not. Although lactate values were comparable at baseline (4.8 ± 2.8 vs. 4.7 ± 3.7 mmol/L), patients with a hypoperfusion context exhibited a more severe circulatory dysfunction with higher vasopressor requirements, and a trend to longer mechanical ventilation days, ICU stay, and more rescue therapies. Only one of the 20 hyperlactatemic patients without a hypoperfusion context died (5%) compared to 11 of the 70 with hypoperfusion-related hyperlactatemia (16%). __Conclusions:__ Two different clinical patterns among hyperlactatemic septic shock patients may be identified according to hypoperfusion context. Patients with hyperlactatemia plus low ScvO2, or high P(cv-a)CO2, or high CRT values exhibited a more severe circulatory dysfunction. This provides a starting point to launch further prospective studies to confirm if this approach can lead to a more selective resuscitation strategy

    Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion

    Get PDF
    Introduction: Although the prognostic value of persistent hyperlactatemia in septic shock is unequivocal, its physiological determinants are controversial. Particularly, the role of impaired hepatic clearance has been underestimated and is only considered relevant in patients with liver ischemia or cirrhosis. Our objectives were to establish whether endotoxemia impairs whole body net lactate clearance, and to explore a potential role for total liver hypoperfusion during the early phase of septic shock. Methods: After anesthesia, 12 sheep were subjected to hemodynamic/perfusion monitoring including hepatic and portal catheterization, and a hepatic ultrasound flow probe. After stabilization (point A), sheep were alternatively assigned to lipopolysaccharide (LPS) (5 mcg/kg bolus followed by 4 mcg/kg/h) or sham for a three-hour study period. After 60 minutes of shock, animals were fluid resuscitated to normalize mean arterial pressure. Repeated series of measurements were performed immediately after fluid resuscitation (point B), and one (point C) and two hours later (point D). Monitoring included systemic and regional hemodynamics, blood gases and lactate measurements, and ex-vivo hepatic mitochondrial respiration at point D. Parallel exogenous lactate and sorbitol clearances were performed at points B and D. Both groups included an intravenous bolus followed by serial blood sampling to draw a curve using the least squares method. Results: Significant hyperlactatemia was already present in LPS as compared to sham animals at point B (4.7 (3.1 to 6.7) versus 1.8 (1.5 to 3.7) mmol/L), increasing to 10.2 (7.8 to 12.3) mmol/L at point D. A significant increase in portal and hepatic lactate levels in LPS animals was also observed. No within-group difference in hepatic DO2, VO2 or O2 extraction, total hepatic blood flow (point D: 915 (773 to 1,046) versus 655 (593 to 1,175) ml/min), mitochondrial respiration, liver enzymes or sorbitol clearance was found. However, there was a highly significant decrease in lactate clearance in LPS animals (point B: 46 (30 to 180) versus 1,212 (743 to 2,116) ml/min, P <0.01; point D: 113 (65 to 322) versus 944 (363 to 1,235) ml/min, P <0.01). Conclusions: Endotoxemia induces an early and severe impairment in lactate clearance that is not related to total liver hypoperfusion

    Diastolic shock index and clinical outcomes in patients with septic shock

    Get PDF
    Background: Loss of vascular tone is a key pathophysiological feature of septic shock. Combination of gradual diastolic hypotension and tachycardia could reflect more serious vasodilatory conditions. We sought to evaluate the relationships between heart rate (HR) to diastolic arterial pressure (DAP) ratios and clinical outcomes during early phases of septic shock. Methods: Diastolic shock index (DSI) was defined as the ratio between HR and DAP. DSI calculated just before starting vasopressors (Pre-VPs/DSI) in a preliminary cohort of 337 patients with septic shock (January 2015 to February 2017) and at vasopressor start (VPs/DSI) in 424 patients with septic shock included in a recent randomized controlled trial (ANDROMEDA-SHOCK; March 2017 to April 2018) was partitioned into five quantiles to estimate the relative risks (RR) of death with respect to the mean risk of each population (assumed to be 1). Matched HR and DAP subsamples were created to evaluate the effect of the individual components of the DSI on RRs. In addition, time-course of DSI and interaction between DSI and vasopressor dose (DSI*NE.dose) were compared between survivors and non-survivors from both populations, while ROC curves were used to identify variables predicting mortality. Finally, as exploratory observation, effect of early start of vasopressors was evaluated at each Pre-VPs/DSI quintile from the preliminary cohort. Results: Risk of death progressively increased at gradual increments of Pre-VPs/DSI or VPs/DSI (One-way ANOVA, p < 0.001). Progressive DAP decrease or HR increase was associated with higher mortality risks only when DSI concomitantly increased. Areas under the ROC curve for Pre-VPs/DSI, SOFA and initial lactate were similar, while mean arterial pressure and systolic shock index showed poor performances to predict mortality. Time-course of DSI and DSI*NE.dose was significantly higher in non-survivors from both populations (repeated-measures ANOVA, p < 0.001). Very early start of vasopressors exhibited an apparent benefit at higher Pre-VPs/DSI quintile. Conclusions: DSI at pre-vasopressor and vasopressor start points might represent a very early identifier of patients at high risk of death. Isolated DAP or HR values do not clearly identify such risk. Usefulness of DSI to trigger or to direct therapeutic interventions in early resuscitation of septic shock need to be addressed in future studies
    • …
    corecore