6,550 research outputs found

    Renormalized Entanglement Entropy for BPS Black Branes

    Full text link
    We compute the renormalized entanglement entropy (REE) for BPS black solutions in N=2{\cal N}=2, 4d gauged supergravity. We find that this quantity decreases monotonically with the size of the entangling region until it reaches a critical point, then increases and approaches the entropy density of the brane. This behavior can be understood as a consequence of the REE being driven by two competing factors, namely entanglement and the mixedness of the black brane. In the UV entanglement dominates, whereas in the IR the mixedness takes over.Comment: 6 pages, 4 figures; v2: Typos fixed, citation and clarifying text added, version accepted in Physical Review

    Characterization of the known T type dwarfs towards the Sigma Orionis cluster

    Full text link
    (Abridged) A total of three T type candidates (SOri70, SOri73, and SOriJ0538-0213) lying in the line of sight towards Sigma Orionis were characterized by means of near-infrared photometric, astrometric, and spectroscopic studies. H-band methane images were collected for all three sources and an additional sample of 15 field T type dwarfs using LIRIS/WHT. J-band spectra of resolution of ~500 were obtained for SOriJ0538-0213 with ISAAC/VLT, and JH spectra of resolution of ~50 acquired with WFC3/HST were employed for the spectroscopic classification of SOri70 and 73. Proper motions with a typical uncertainty of +/-3 mas/yr and a time interval of ~7-9 yr were derived. Using the LIRIS observations of the field T dwarfs, we calibrated this imager for T spectral typing via methane photometry. The three SOri objects were spectroscopically classified as T4.5+/-0.5 (SOri73), T5+/-0.5 (SOriJ0538-0213), and T7−1.0+0.5^{+0.5}_{-1.0} (SOri70). The similarity between the observed JH spectra and the methane colors and the data of field ultra-cool dwarfs of related classifications suggests that SOri70, 73, and SOriJ053804.65-021352.5 do not deviate significantly in surface gravity in relation to the field. Additionally, the detection of KI at ~1.25 microns in SOriJ0538-0213 points to a high-gravity atmosphere. Only the K-band reddish nature of SOri70 may be consistent with a low gravity atmosphere. The proper motions of SOri70 and 73 are measurable and are larger than that of the cluster by >3.5 sigma. The proper motion of SOriJ0538-0213 is consistent with a null displacement. These observations suggest that none of the three T dwarfs are likely Sigma Orionis members, and that either planetary-mass objects with masses below ~4 MJup may not exist free-floating in the cluster or they may lie at fainter near-infrared magnitudes than those of the targets (this is H>20.6 mag), thus remaining unidentified to date.Comment: Accepted for publication in A&A (2014), corrected typo

    Discovery of a Low-Mass Brown Dwarf Companion of the Young Nearby Star G196-3

    Get PDF
    A substellar-mass object in orbit at about 300 astronomical units (AU) from the young low-mass star G196-3 was detected by direct imaging. Optical and infrared photometry and low- and intermediate-resolution spectroscopy of the faint companion, hereafter referred to as G196-3B, confirms its cool atmosphere and allows its mass to be estimated at 25^{+15}_{-10} Jupiter masses. The separation between both objects and their mass ratio suggest the fragmentation of a collapsing cloud as the most likely origin for G196-3B, but alternatively it could have originated from a proto-planetary disc which has been dissipated. Whatever the formation process was, the young age of the primary star (about 100 Myr) demonstrates that substellar companions can form in short time scales.Comment: Published in Science (13 Nov). One color figur

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure
    • 

    corecore