3,418 research outputs found

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure

    Mercury removal in wastewater by iron oxide nanoparticles

    Get PDF
    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements

    An L-type substellar object in Orion: reaching the mass boundary between brown dwarfs and giant planets

    Get PDF
    We present J-band photometry and low-resolution optical spectroscopy (600-1000 nm) for one of the faintest substellar member candidates in the young sigma Ori cluster, SOri 47 (I=20.53, Bejar et al. 1999). Its very red (I-J)=3.3+/-0.1 color and its optical spectrum allow us to classify SOri 47 as an L1.5-type object which fits the low-luminosity end of the cluster photometric and spectroscopic sequences. It also displays atmospheric features indicative of low gravity such as weak alkaline lines and hydride and oxide bands, consistent with the expectation for a very young object still undergoing gravitational collapse. Our data lead us to conclude that SOri 47 is a true substellar member of the sigma Ori cluster. Additionally, we present the detection of LiI in its atmosphere which provides an independent confirmation of youth and substellarity. Using current theoretical evolutionary tracks and adopting an age interval of 1-5 Myr for the sigma Ori cluster, we estimate the mass of SOri 47 at 0.015+/-0.005 Msun, i.e. at the minimum mass for deuterium burning, which has been proposed as a definition for the boundary between brown dwarfs and giant planets. SOri 47 could well be the result of a natural extension of the process of cloud fragmentation down to the deuterium burning mass limit; a less likely alternative is that it has originated from a protoplanetary disc around a more massive cluster member and later ejected from its orbit due to interacting effects within this rather sparse (~12 objects/pc^3) young cluster.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter

    Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    Full text link
    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics

    The Substellar Mass Function in sigma Orionis

    Full text link
    We combine results from imaging searches for substellar objects in the sigma Orionis cluster and follow-up photometric and spectroscopic observations to derive a census of the brown dwarf population in a region of 847 arcmin^2. We identify 64 very low-mass cluster member candidates in this region. We have available three color (IZJ) photometry for all of them, spectra for 9 objects, and K photometry for 27% of our sample. These data provide a well defined sequence in the I vs I-J, I-K color magnitude diagrams, and indicate that the cluster is affected by little reddening despite its young age (~5 Myr). Using state-of-the-art evolutionary models, we derive a mass function from the low-mass stars (0.2 Msol) across the complete brown dwarf domain (0.075 Msol to 0.013 Msol), and into the realm of free-floating planetary-mass objects (<0.013 Msol). We find that the mass spectrum (dN/dm ~ m^{-alpha}) increases toward lower masses with an exponent alpha = 0.8+/-0.4. Our results suggest that planetary-mass isolated objects could be as common as brown dwarfs; both kinds of objects together would be as numerous as stars in the cluster. If the distribution of stellar and substellar masses in sigma Orionis is representative of the Galactic disk, older and much lower luminosity free-floating planetary-mass objects with masses down to about 0.005 Msol should be abundant in the solar vicinity, with a density similar to M-type stars.Comment: Accepted for publication in ApJ. 19 pages, 3 figures include
    corecore