37 research outputs found

    Cosmology with clusters of galaxies

    Get PDF
    In this Chapter I review the role that galaxy clusters play as tools to constrain cosmological parameters. I will concentrate mostly on the application of the mass function of galaxy clusters, while other methods, such as that based on the baryon fraction, are covered by other Chapters of the book. Since most of the cosmological applications of galaxy clusters rely on precise measurements of their masses, a substantial part of my Lectures concentrates on the different methods that have been applied so far to weight galaxy clusters. I provide in Section 2 a short introduction to the basics of cosmic structure formation. In Section 3 I describe the Press--Schechter (PS) formalism to derive the cosmological mass function, then discussing extensions of the PS approach and the most recent calibrations from N--body simulations. In Section 4 I review the methods to build samples of galaxy clusters at different wavelengths. Section 5 is devoted to the discussion of different methods to derive cluster masses. In Section 6 I describe the cosmological constraints, which have been obtained so far by tracing the cluster mass function with a variety of methods. Finally, I describe in Section 7 the future perspectives for cosmology with galaxy clusters and the challenges for clusters to keep playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School on Clusters, to appear in "Lecture notes in Physics" (Springer

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    A century of trends in adult human height

    No full text
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Association of preeclampsia with anthropometric measures and blood pressure in Indian children

    No full text
    Background and objectiveBirth weight and post-natal growth are important predictors of adult health. Preeclampsia (PE) is associated with low birth weight and may have long term effects on the health of the children. The current study aims to compare anthropometry and blood pressure between children of mothers with and without PE in an Indian cohort.MethodsWe studied children born to women with (PE; n = 211) and without preeclampsia (non-PE; n = 470) at Bharati Hospital, Pune, India. Anthropometry and blood pressure were measured in children at 3–7 years of age. Weight and height Z-scores were calculated using the WHO 2006 growth reference. Independent t-tests were used to compare means between the two groups, and associations between preeclampsia and child outcomes were analyzed using multiple linear regression, adjusting for potential confounders.ResultsWeight and height Z-scores (p = 0.04 and 0.008), and subscapular skinfold thickness (p = 0.03) were higher among children of PE compared with children of non-PE mothers. Systolic blood pressure was also higher in children of PE mothers (1.70 mmHg [95% CI 0.05, 2.90] p = 0.006). BMI and diastolic blood pressure did not differ between groups. In regression models adjusted for newborn weight and gestational age, current age and sex, and maternal height, BMI and socio-economic status, children of PE mothers had higher weight Z-score (0.27 SD [95%CI 0.06, 0.48] p = 0.01), height Z-score (0.28 SD [95%CI 0.09, 0.47] p = 0.005), and subscapular skinfold thickness (0.38 mm [95%CI 0.00, 0.76] p = 0.049). A trend for higher systolic blood pressure (1.59 mmHg [95%CI -0.02, 3.20] p = 0.053) in the children was also observed in the adjusted model. The difference in systolic blood pressure was attenuated after adjusting further for the child’s weight and height (1.09 mmHg [95%CI -0.48, 2.67] p = 0.17). There was no evidence of differences in effects between boys and girls.ConclusionChildren of PE mothers were taller and heavier, and had higher systolic blood pressure, partly explained by their increased body size, than children of non-PE mothers. In utero exposure to preeclampsia may increase the risk of future cardiovascular disease

    Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis

    No full text
    Background: disturbed one-carbon (1-C) metabolism in the mother is associated with poor fetal growth but causality of this relationship has not been established.Methods: we studied the association between maternal total homocysteine and offspring birthweight in the Pune Maternal Nutrition Study (PMNS, Pune, India) and Parthenon Cohort Study (Mysore, India). We tested for evidence of causality within a Mendelian randomization framework, using a methylenetetrahydrofolatereductase (MTHFR) gene variant rs1801133 (earlier known as 677C?T) by instrumental variable and triangulation analysis, separately and using meta-analysis.Results: median (IQR) homocysteine concentration and mean (SD) birthweight were 8.6 µmol/l (6.7,10.8) and 2642?g (379) in the PMNS and 6.0 µmol/l (5.1,7.1) and 2871?g (443) in the Parthenon study. Offspring birthweight was inversely related to maternal homocysteine concentration—PMNS: –22?g/SD [95% confidence interval (CI): (–50, 5), adjusted for gestational age and offspring gender]; Parthenon: –57?g (–92, –21); meta-analysis: –40?g (–62, –17)]. Maternal risk genotype at rs1801133 predicted higher homocysteine concentration [PMNS: 0.30 SD/allele (0.14, 0.46); Parthenon: 0.21 SD (0.02, 0.40); meta-analysis: 0.26 SD (0.14, 0.39)]; and lower birthweight [PMNS: –46?g (–102, 11, adjusted for gestational age, offspring gender and rs1801133 genotype); Parthenon: –78?g (–170, 15); meta-analysis: –61?g (–111, –10)]. Instrumental variable and triangulation analysis supported a causal association between maternal homocysteine concentration and offspring birthweight.Conclusions: our findings suggest a causal role for maternal homocysteine (1-C metabolism) in fetal growth. Reducing maternal homocysteine concentrations may improve fetal growt
    corecore