5 research outputs found
Bernstein Series Solution of a Class of Lane-Emden Type Equations
The purpose of this study is to present an approximate solution that depends on collocation points and Bernstein polynomials for a class of Lane-Emden type equations with mixed conditions. The method is given with some priori error estimate. Even the exact solution is unknown, an upper bound based on the regularity of the exact solution will be obtained. By using the residual correction procedure, the absolute error can be estimated. Also, one can specify the optimal truncation limit n which gives a better result in any norm. Finally, the effectiveness of the method is illustrated by some numerical experiments. Numerical results are consistent with the theoretical results
Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions
An algorithm for approximating solutions to fractional differential equations (FDEs) in a modified new Bernstein polynomial basis is introduced. Writing x→xα(0<α<1) in the operational matrices of Bernstein polynomials, the fractional Bernstein polynomials are obtained and then transformed into matrix form. Furthermore, using Caputo fractional derivative, the matrix form of the fractional derivative is constructed for the fractional Bernstein matrices. We convert each term of the problem to the matrix form by means of fractional Bernstein matrices. A basic matrix equation which corresponds to a system of fractional equations is utilized, and a new system of nonlinear algebraic equations is obtained. The method is given with some priori error estimate. By using the residual correction procedure, the absolute error can be estimated. Illustrative examples are included to demonstrate the validity and applicability of the presented technique
An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs
In this paper, we introduce two new methods to solve systems of ordinary differential equations. The first method is constituted of the generalized Bernstein functions, which are obtained by Bernstein polynomials, and operational matrix of differentiation with collocation method. The second method depends on tau method, the generalized Bernstein functions and operational matrix of differentiation. These methods produce a series which is obtained by non-polynomial functions set. We give the standard Bernstein polynomials to explain the generalizations for both methods. By applying the residual correction procedure to the methods, one can estimate the absolute errors for both methods and may obtain more accurate results. We apply the methods to some test examples including linear system, non-homogeneous linear system, nonlinear stiff systems, non-homogeneous nonlinear system and chaotic Genesio system. The numerical shows that the methods are efficient and work well. Increasing m yields a decrease on the errors for all methods. One can estimate the errors by using the residual correction procedure
An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials
In this study, we introduce an efficient computational method to obtain an approximate solution of the time-dependent Emden-Fowler type equations. The method is based on the 2D-Bernstein polynomials (2D-BPs) and their operational matrices. In the cases of time-dependent Lane–Emden type problems and wave-type equations which are the special cases of the problem, the method converts the problem to a linear system of algebraic equations. If the problem has a nonlinear part, the final system is nonlinear. We analyzed the error and give a theorem for the convergence. To estimate the error for the numerical solutions and then obtain more accurate approximate solutions, we give the residual correction procedure for the method. To show the effectiveness of the method, we apply the method to some test examples. The method gives more accurate results whenever increasing n,m for linear problems. For the nonlinear problems, the method also works well. For linear and nonlinear cases, the residual correction procedure estimates the error and yields the corrected approximations that give good approximation results. We compare the results with the results of the methods, the homotopy analysis method, homotopy perturbation method, Adomian decomposition method, and variational iteration method, on the nodes. Numerical results reveal that the method using 2D-BPs is more effective and simple for obtaining approximate solutions of the time-dependent Emden-Fowler type equations and the method presents a good accuracy