24 research outputs found
Partially-disordered photonic-crystal thin films for enhanced and robust photovoltaics
We present a general framework for the design of thin-film photovoltaics
based on a partially-disordered photonic crystal that has both enhanced
absorption for light trapping and reduced sensitivity to the angle and
polarization of incident radiation. The absorption characteristics of different
lattice structures are investigated as an initial periodic structure is
gradually perturbed. We find that an optimal amount of disorder controllably
introduced into a multi-lattice photonic crystal causes the characteristic
narrow-band, resonant peaks to be broadened resulting in a device with enhanced
and robust performance ideal for typical operating conditions of photovoltaic
applications.Comment: 5 pages, 4 figure
A novel boundary element method using surface conductive absorbers for full-wave analysis of 3-D nanophotonics
Fast surface integral equation (SIE) solvers seem to be ideal approaches for
simulating 3-D nanophotonic devices, as these devices generate fields both in
an interior channel and in the infinite exterior domain. However, many devices
of interest, such as optical couplers, have channels that can not be terminated
without generating reflections. Generating absorbers for these channels is a
new problem for SIE methods, as the methods were initially developed for
problems with finite surfaces. In this paper we show that the obvious approach
for eliminating reflections, making the channel mildly conductive outside the
domain of interest, is inaccurate. We describe a new method, in which the
absorber has a gradually increasing surface conductivity; such an absorber can
be easily incorporated in fast integral equation solvers. Numerical experiments
from a surface-conductivity modified FFT-accelerated PMCHW-based solver are
correlated with analytic results, demonstrating that this new method is orders
of magnitude more effective than a volume absorber, and that the smoothness of
the surface conductivity function determines the performance of the absorber.
In particular, we show that the magnitude of the transition reflection is
proportional to 1/L^(2d+2), where L is the absorber length and d is the order
of the differentiability of the surface conductivity function.Comment: 10 page
Passive Heat Exchangers for Waveguide Combiners to Reduce Thermal Load from Light Engine in Display Subassembly Units
Heat generated by the light engines of augmented reality (AR) smart glasses can degrade image quality by causing structural deformations, variations in optical path lengths, and inhomogeneity in the refractive index profile of the glasses or optical components therein. This disclosure describes techniques for passively cooling a display subassembly (DSA) unit of smart glasses by leveraging the relatively large surface area of a waveguide combiner to exchange heat with free space. Heat exchange can be accomplished by surface texturing of the waveguide combiner to improve cooling via convection and/or by surface coatings of the boundary of the waveguide combiner to enhance cooling via conduction. By reducing the temperature of the light engine, the techniques improve the optical performance of the DSA. By reducing the temperature gradient throughout the waveguide combiner, the techniques reduce or eliminate image artifacts arising from refractive-index inhomogeneities
A fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures
http://link.aps.org/doi/10.1103/PhysRevE.79.065601We demonstrate that the ratio of group to phase velocity has a simple relationship to the orientation of the electromagnetic field. In nondispersive materials, opposite group and phase velocity corresponds to fields that are mostly oriented in the propagation direction. More generally, this relationship (including the case of dispersive and negative-index materials) offers a perspective on the phenomena of backward waves and left-handed media. As an application of this relationship, we demonstrate and explain an irrecoverable failure of perfectly matched layer absorbing boundaries in computer simulations for constant cross-section waveguides with backward-wave modes and suggest an alternative in the form of adiabatic isotropic absorbers
Computation and design for nanophotonics
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 191-209).The versatility of computational design as an alternative to design by nanofabrication has made computers a reliable design tool in nanophotonics. Given that almost any 2d pattern can be fabricated at infrared length scales, there exists a large number of degrees of freedom in nanophotonic device design. However current designs are adhoc and could potentially benefit from optimization but there are several outstanding issues regarding PDE-based optimization for electromagnetism that must first be addressed: continuously and accurately deforming geometric objects represented on a discrete uniform grid while avoiding staircasing effects, reducing the computational expense of large simulations while improving accuracy, resolving the breakdown of standard absorbing boundary layers for important problems, finding robust designs that are impervious to small perturbations, and finally distinguishing global from local minima. We address each of these issues in turn by developing novel subpixel smoothing methods that markedly improve the accuracy of simulations, demonstrate the failure of perfectly matched layers (PML) in several important cases and propose a workaround, develop a simple procedure to determine the validity of any PML implementation and incorporate these and other enhancements into a flexible, free software package for electromagnetic simulations based on the finite-difference time-domain (FDTD) method. Next we investigate two classes of design problems in nanophotonics. The first involves finding cladding structures for holey photoniccrystal fibers at low-index contrasts that permit a larger class of materials to be used in the fabrication process. The second is the development of adiabatic tapers for coupling to slow-light modes of photonic-crystal waveguides that are insensitive to manufacturing and operational variability.by Ardavan Oskooi.Sc.D