19 research outputs found

    Medical students' attitudes towards psychiatry improve following psychiatry clinical placements: the ATPP study

    Get PDF
    Purpose In previous research, personality and exposure to psychiatry were independently shown to shape medical students attitudes towards psychiatry (ATP). This paper aims to investigate the role of psychiatry placements and personality types on medical student attitudes towards psychiatry (ATP). Design/methodology/approach All medical students from four consecutive years at Cambridge University, UK were invited to take part in an online questionnaire including the ATP-30 Questionnaire and The Big Five Factor personality Inventory (BFI). Findings Students who had completed their psychiatry placement had more positive ATP than students who had not (t = −3.24, adjusted p = 0.004). However, this was not reflected in an increased self-reported likelihood of choosing psychiatry as a career (t = 0.28, adjusted p = 0.78). Higher agreeable personality scores were associated with both a higher willingness to take up psychiatry as a career (linear model estimate 0.06; p = 0.03), and more positive ATP (linear model estimate 0.14; p &lt; 0.0001). Originality/value This work seems to confirm that exposure to psychiatry improves attitudes towards psychiatry. Agreeable personality traits were also associated with a higher willingness to take up psychiatry postgraduate training. These findings might help shape future campaigns to improve the profile of psychiatry training. Future research on this topic is needed to address whether improved ATP among medical students can longitudinally improve recruitment into post-graduate psychiatry training. </jats:sec

    Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels

    Get PDF
    BACKGROUND: Peripheral low-grade inflammation in depression is increasingly seen as a therapeutic target. We aimed to establish the prevalence of low-grade inflammation in depression, using different C-reactive protein (CRP) levels, through a systematic literature review and meta-analysis. // METHODS: We searched the PubMed database from its inception to July 2018, and selected studies that assessed depression using a validated tool/scale, and allowed the calculation of the proportion of patients with low-grade inflammation (CRP &gt;3 mg/L) or elevated CRP (&gt;1 mg/L). // RESULTS: After quality assessment, 37 studies comprising 13 541 depressed patients and 155 728 controls were included. Based on the meta-analysis of 30 studies, the prevalence of low-grade inflammation (CRP &gt;3 mg/L) in depression was 27% (95% CI 21-34%); this prevalence was not associated with sample source (inpatient, outpatient or population-based), antidepressant treatment, participant age, BMI or ethnicity. Based on the meta-analysis of 17 studies of depression and matched healthy controls, the odds ratio for low-grade inflammation in depression was 1.46 (95% CI 1.22-1.75). The prevalence of elevated CRP (&gt;1 mg/L) in depression was 58% (95% CI 47-69%), and the meta-analytic odds ratio for elevated CRP in depression compared with controls was 1.47 (95% CI 1.18-1.82). // CONCLUSIONS: About a quarter of patients with depression show evidence of low-grade inflammation, and over half of patients show mildly elevated CRP levels. There are significant differences in the prevalence of low-grade inflammation between patients and matched healthy controls. These findings suggest that inflammation could be relevant to a large number of patients with depression

    Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls

    Get PDF
    Importance The magnitude and variability of cytokine alterations in depression are not clear. Objective To perform an up to date meta-analysis of mean differences of immune markers in depression, and to quantify and test for evidence of heterogeneity in immune markers in depression by conducting a meta-analysis of variability to ascertain whether only a sub-group of patients with depression show evidence of inflammation. Data Sources Studies that reported immune marker levels in peripheral blood in patients with depression and matched healthy controls in the MEDLINE database from inception to August 29th 2018 were examined. Study Selection Case-control studies that reported immune marker levels in peripheral blood in patients with depression and healthy controls were selected. Data Extraction and Synthesis Means and variances (SDs) were extracted for each measure to calculate effect sizes, which were combined using multivariate meta-analysis. Main Outcomes and Measures Hedges g was used to quantify mean differences. Relative variability of immune marker measurements in patients compared with control groups as indexed by the coefficient of variation ratio (CVR). Results A total of 107 studies that reported measurements from 5,166 patients with depression and 5,083 controls were included in the analyses. Levels of CRP (g=0.71; 95%CI: 0.50-0.92; p<0.0001); IL-3 (g=0.60; 95%CI: 0.31-0.89; p<0.0001); IL-6 (g=0.61; 95%CI: 0.39-0.82; p<0.0001); IL-12 (g=1.18; 95%CI: 0.74-1.62; p<0.0001); IL-18 (g=1.97; 95%CI: 1.00-2.95; p<0.0001); sIL-2R (g=0.71; 95%CI: 0.44-0.98; p<0.0001); and TNFα (g=0.54; 95%CI: 0.32-0.76; p<0.0001) were significantly higher in patients with depression. These findings were robust to a range of potential confounds and moderators. Mean-scaled variability, measured as CVR, was significantly lower in patients with depression for CRP (CVR=0.85; 95%CI: 0.75-0.98; p=0.02); IL-12 (CVR=0.61; 95%CI: 0.46-0.80; p<0.01); and sIL-2R (CVR=0.85; 95%CI: 0.73-0.99; p=0.04), while it was unchanged for IL-3, IL-6, IL-18, and TNF α. Conclusions and Relevance Acute depression is confirmed as a pro-inflammatory state. Some of the inflammatory markers elevated in depression, including CRP and IL-12, show reduced variability in patients with depression, therefore supporting greater homogeneity in terms of an inflammatory phenotype in depression. Some inflammatory marker elevations in depression do not appear due to an inflamed sub-group, but rather to a right shift of the immune marker distribution

    Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study

    Get PDF
    BACKGROUND: Cardiovascular disease is a major cause of excess mortality in people with schizophrenia. Several factors are responsible, including lifestyle and metabolic effects of antipsychotics. However, variations in cardiac structure and function are seen in people with schizophrenia in the absence of cardiovascular disease risk factors and after accounting for lifestyle and medication. Therefore, we aimed to explore whether shared genetic causes contribute to these cardiac variations. METHODS: For this observational study, we used data from the UK Biobank and included White British or Irish individuals without diagnosed schizophrenia with variable polygenic risk scores for the condition. To test the association between polygenic risk score for schizophrenia and cardiac phenotype, we used principal component analysis and regression. Robust regression was then used to explore the association between the polygenic risk score for schizophrenia and individual cardiac phenotypes. We repeated analyses with fibro-inflammatory pathway-specific polygenic risk scores for schizophrenia. Last, we investigated genome-wide sharing of common variants between schizophrenia and cardiac phenotypes using linkage disequilibrium score regression. The primary outcome was principal component regression. FINDINGS: Of 33 353 individuals recruited, 32 279 participants had complete cardiac MRI data and were included in the analysis, of whom 16 625 (51·5%) were female and 15 654 (48·5%) were male. 1074 participants were excluded on the basis of incomplete cardiac MRI data (for all phenotypes). A model regressing polygenic risk scores for schizophrenia onto the first five cardiac principal components of the principal components analysis was significant (F=5·09; p=0·00012). Principal component 1 captured a pattern of increased cardiac volumes, increased absolute peak diastolic strain rates, and reduced ejection fractions; polygenic risk scores for schizophrenia and principal component 1 were negatively associated (β=-0·01 [SE 0·003]; p=0·017). Similar to the principal component analysis results, for individual cardiac phenotypes, we observed negative associations between polygenic risk scores for schizophrenia and indexed right ventricular end-systolic volume (β=-0·14 [0·04]; p=0·0013, pFDR=0·015), indexed right ventricular end-diastolic volume (β=-0·17 [0·08]); p=0·025; pFDR=0·082), and absolute longitudinal peak diastolic strain rates (β=-0·01 [0·003]; p=0·0024, pFDR=0·015), and a positive association between polygenic risk scores for schizophrenia and right ventricular ejection fraction (β=0·09 [0·03]; p=0·0041, pFDR=0·015). Models examining the transforming growth factor-β (TGF-β)-specific and acute inflammation-specific polygenic risk scores for schizophrenia found significant associations with the first five principal components (F=2·62, p=0·022; F=2·54, p=0·026). Using linkage disequilibrium score regression, we observed genetic overlap with schizophrenia for right ventricular end-systolic volume and right ventricular ejection fraction (p=0·0090, p=0·0077). INTERPRETATION: High polygenic risk scores for schizophrenia are associated with decreased cardiac volumes, increased ejection fractions, and decreased absolute peak diastolic strain rates. TGF-β and inflammatory pathways might be implicated, and there is evidence of genetic overlap for some cardiac phenotypes. Reduced absolute peak diastolic strain rates indicate increased myocardial stiffness and diastolic dysfunction, which increases risk of cardiac disease. Thus, genetic risk for schizophrenia is associated with cardiac structural changes that can worsen cardiac outcomes. Further work is required to determine whether these associations are specific to schizophrenia or are also seen in other psychiatric conditions. FUNDING: National Institute for Health Research, Maudsley Charity, Wellcome Trust, Medical Research Council, Academy of Medical Sciences, Edmond J Safra Foundation, British Heart Foundation

    Cardiac structure and function in schizophrenia: cardiac magnetic resonance imaging study

    Get PDF
    BACKGROUND: Heart disease is the leading cause of death in schizophrenia. However, there has been little research directly examining cardiac function in schizophrenia. AIMS: To investigate cardiac structure and function in individuals with schizophrenia using cardiac magnetic resonance imaging (CMR) after excluding medical and metabolic comorbidity. METHOD: In total, 80 participants underwent CMR to determine biventricular volumes and function and measures of blood pressure, physical activity and glycated haemoglobin levels. Individuals with schizophrenia ('patients') and controls were matched for age, gender, ethnicity and body surface area. RESULTS: Patients had significantly smaller indexed left ventricular (LV) end-diastolic volume (effect size d = -0.82, P = 0.001), LV end-systolic volume (d = -0.58, P = 0.02), LV stroke volume (d = -0.85, P = 0.001), right ventricular (RV) end-diastolic volume (d = -0.79, P = 0.002), RV end-systolic volume (d = -0.58, P = 0.02), and RV stroke volume (d = -0.87, P = 0.001) but unaltered ejection fractions relative to controls. LV concentricity (d = 0.73, P = 0.003) and septal thickness (d = 1.13, P < 0.001) were significantly larger in the patients. Mean concentricity in patients was above the reference range. The findings were largely unchanged after adjusting for smoking and/or exercise levels and were independent of medication dose and duration. CONCLUSIONS: Individuals with schizophrenia show evidence of concentric cardiac remodelling compared with healthy controls of a similar age, gender, ethnicity, body surface area and blood pressure, and independent of smoking and activity levels. This could be contributing to the excess cardiovascular mortality observed in schizophrenia. Future studies should investigate the contribution of antipsychotic medication to these changes

    A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    No full text
    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells

    A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.

    No full text
    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells

    Cardiac structure and function in patients with schizophrenia taking antipsychotic drugs: an MRI study

    No full text
    Cardiovascular disease (CVD) is a major cause of excess mortality in schizophrenia. Preclinical evidence shows antipsychotics can cause myocardial fibrosis and myocardial inflammation in murine models, but it is not known if this is the case in patients. We therefore set out to determine if there is evidence of cardiac fibrosis and/or inflammation using cardiac MRI in medicated patients with schizophrenia compared with matched healthy controls. Thirty-one participants (14 patients and 17 controls) underwent cardiac MRI assessing myocardial markers of fibrosis/inflammation, indexed by native myocardial T1 time, and cardiac structure (left ventricular (LV) mass) and function (left/right ventricular end-diastolic and end-systolic volumes, stroke volumes, and ejection fractions). Participants were physically fit, and matched for age, gender, smoking, blood pressure, BMI, HbA1c, ethnicity, and physical activity. Compared with controls, native myocardial T1 was significantly longer in patients with schizophrenia (effect size, d = 0.89; p = 0.02). Patients had significantly lower LV mass, and lower left/right ventricular end-diastolic and stroke volumes (effect sizes, d = 0.86-1.08; all p-values  0.05). These results suggest an early diffuse fibro-inflammatory myocardial process in patients that is independent of established CVD-risk factors and could contribute to the excess cardiovascular mortality associated with schizophrenia. Future studies are required to determine if this is due to antipsychotic treatment or is intrinsic to schizophrenia
    corecore