28 research outputs found

    Stable and Unstable Malaria Hotspots in Longitudinal Cohort Studies in Kenya

    Get PDF
    BACKGROUND: Infectious diseases often demonstrate heterogeneity of transmission among host populations. This heterogeneity reduces the efficacy of control strategies, but also implies that focusing control strategies on "hotspots" of transmission could be highly effective. METHODS AND FINDINGS: In order to identify hotspots of malaria transmission, we analysed longitudinal data on febrile malaria episodes, asymptomatic parasitaemia, and antibody titres over 12 y from 256 homesteads in three study areas in Kilifi District on the Kenyan coast. We examined heterogeneity by homestead, and identified groups of homesteads that formed hotspots using a spatial scan statistic. Two types of statistically significant hotspots were detected; stable hotspots of asymptomatic parasitaemia and unstable hotspots of febrile malaria. The stable hotspots were associated with higher average AMA-1 antibody titres than the unstable clusters (optical density [OD] = 1.24, 95% confidence interval [CI] 1.02-1.47 versus OD = 1.1, 95% CI 0.88-1.33) and lower mean ages of febrile malaria episodes (5.8 y, 95% CI 5.6-6.0 versus 5.91 y, 95% CI 5.7-6.1). A falling gradient of febrile malaria incidence was identified in the penumbrae of both hotspots. Hotspots were associated with AMA-1 titres, but not seroconversion rates. In order to target control measures, homesteads at risk of febrile malaria could be predicted by identifying the 20% of homesteads that experienced an episode of febrile malaria during one month in the dry season. That 20% subsequently experienced 65% of all febrile malaria episodes during the following year. A definition based on remote sensing data was 81% sensitive and 63% specific for the stable hotspots of asymptomatic malaria. CONCLUSIONS: Hotspots of asymptomatic parasitaemia are stable over time, but hotspots of febrile malaria are unstable. This finding may be because immunity offsets the high rate of febrile malaria that might otherwise result in stable hotspots, whereas unstable hotspots necessarily affect a population with less prior exposure to malaria

    Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria.

    Get PDF
    Ring-infected erythrocytes are the predominant asexual stage in the peripheral circulation but are rarely investigated in the context of acquired immunity against Plasmodium falciparum malaria. Here we compare antibody-dependent phagocytosis of ring-infected parasite cultures in samples from a controlled human malaria infection (CHMI) study (NCT02739763). Protected volunteers did not develop clinical symptoms, maintained parasitaemia below a predefined threshold of 500 parasites/μl and were not treated until the end of the study. Antibody-dependent phagocytosis of both ring-infected and uninfected erythrocytes from parasite cultures was strongly correlated with protection. A surface proteomic analysis revealed the presence of merozoite proteins including erythrocyte binding antigen-175 and -140 on ring-infected and uninfected erythrocytes, providing an additional antibody-mediated protective mechanism for their activity beyond invasion-inhibition. Competition phagocytosis assays support the hypothesis that merozoite antigens are the key mediators of this functional activity. Targeting ring-stage parasites may contribute to the control of parasitaemia and prevention of clinical malaria

    Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection

    Get PDF
    Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems

    The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. <it>Plasmodium falciparum </it>Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria.</p> <p>Methods</p> <p>Nine monoclonal antibodies (Mabs) were produced against <it>Escherichia coli</it>-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally <it>P. falciparum</it>-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce <it>P. falciparum </it>growth inhibition <it>in vitro </it>and compared against polyclonal rabbit serum raised against recombinant MSP4</p> <p>Results</p> <p>All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth <it>in vitro </it>in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth.</p> <p>Conclusions</p> <p>The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for <it>P. falciparum </it>growth inhibition <it>in vitro</it>.</p

    Impact of the RTS,S Malaria Vaccine Candidate on Naturally Acquired Antibody Responses to Multiple Asexual Blood Stage Antigens

    Get PDF
    Partial protective efficacy lasting up to 43 months after vaccination with the RTS,S malaria vaccine has been reported in one cohort (C1) of a Phase IIb trial in Mozambique, but waning efficacy was observed in a smaller contemporaneous cohort (C2). We hypothesized that low dose exposure to asexual stage parasites resulting from partial pre-erythrocytic protection afforded by RTS,S may contribute to long-term vaccine efficacy to clinical disease, which was not observed in C2 due to intense active detection of infection and treatment. in C2 only (Hazard Ratio [HR]: 0.76, 95% CI 0.66–0.88; HR: 0.75, 95% CI 0.62–0.92, respectively).Vaccination with RTS,S modestly reduces anti-AMA-1 and anti-MSP-1 antibodies in very young children. However, for antigens associated with lower risk of clinical malaria, there were no vaccine group or cohort-specific effects, and age did not influence antibody levels between treatment groups for these antigens. The antigens tested do not explain the difference in protective efficacy in C1 and C2. Other less-characterized antigens or VSA may be important to protection

    Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys

    Get PDF
    The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals

    Changes in malaria epidemiology in Africa and new challenges for elimination

    No full text
    Although the burden of Plasmodium falciparum malaria is gradually declining in many parts of Africa, it is characterized by spatial and temporal variability that presents new and evolving challenges for malaria control programs. Reductions in the malaria burden need to be sustained in the face of changing epidemiology whilst simultaneously tackling significant pockets of sustained or increasing transmission. Large-scale, robust surveillance mechanisms that measure rather than estimate the actual burden of malaria over time from large areas of the continent where such data are lacking need to be prioritized. We review these fascinating developments, caution against complacency, and make the case that improving the extent and quality of malaria surveillance is vital for Africa as she marches on towards elimination

    Turning discoveries into treatments: Immunology in Africa

    No full text
    An exemplar outcome of an immunology-based intervention is vaccine development; the current COVID-19 pandemic is a case in point. Can we build an immunology research ecosystem in Africa that nurtures discovery and enables translation? We see African immunologists as key agents of change and discuss obstacles and opportunities

    Vaccine candidate discovery for the next generation of malaria vaccines.

    No full text
    Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines
    corecore