3 research outputs found

    Geoelectrical resistivity imaging of shallow oil sands in the Eastern Dahomey Basin (SW Nigeria): Implication for heavy oil exploration and production

    No full text
    The Eastern Dahomey Basin hosts an extensive reserve of oil sands, a significant portion of which is unexplored and located within the southwestern part of Nigeria. Here, we use detailed outcrop mapping and Electrical Resistivity Tomography (ERT) to investigate the physical and geological characteristics of the oil sands and surrounding lithological units within the Eastern Dahomey Basin in SW Nigeria. The oil sands in the studied outcrop belong to the Turonian to Maastrichtian sandstones of the Afowo Formation which is characterized by active bitumen seepage along the length of the outcrop. The ERT results reveal lateral and vertical variability of the overburden and oil sands units in the study area. The oil sands are characterised by two unique geoelectric anomalies. Each of these anomalies has higher resistivity values (>3713 Ωm) compared to the low resistivity values of the topsoil/laterite overburden (160–2790 Ωm) and the underlying clay dominated interval (160–1576 Ωm). Importantly, the oil sands have variable thicknesses of up to 20 m and are located at shallow depths (~1–5 m below ground level). Hence, the oil sands can be exploited using surface mining techniques. This study provides a detailed assessment into the application of a non-invasive geophysical techniques for characterising oil sands near an active seep system, with implications for drawing up exploitation strategies

    Quantitative datasets reveal marked gender disparities in Earth Sciences faculty rank in Africa

    Get PDF
    As in most disciplines of science, technology, engineering, mathematics and medicine (STEMM), gender disparity is prevalent in the ranking of Earth Sciences faculties at senior and advanced levels. (i.e., Associate and Full Professors). In this study, a robust database was mined, created, and analyzed to assess the faculty compositions of 142 Earth Science departments in 39 countries across Africa. The data were collected from verifiable online resources focusing on ranks and gender ratios within each department. The studied earth science departments cut across universities in northern, southern, central, eastern, and western Africa. Our data revealed that female faculty members are predominantly underrepresented in most of the departments documented and are markedly uncommon in senior positions such as Professors, associate Professors, and senior researchers compared to their male counterparts. On the contrary, female faculty members are predominant in the lower cadres, such as lecturers, teaching, and graduate assistants. The observed male to female ratio is 4:1. At the base of this gender gap is the lower enrolment of female students in Earth Science courses from undergraudate to graduate studies. To achieve gender equality in Earth Science faculty composition in Africa, we recommend increasing female students’ enrollment, mentoring, awareness, timely promotion of accomplished female researchers, and formulation of enabling government policies. More work-related policies that guarantee work-life balance for female earth science academic professionals should be formulated to attract and retain more women into Earth Sciences careers
    corecore