7 research outputs found

    Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

    Get PDF
    The genomes of Methylosarcina lacus LW14(T) (=ATCC BAA-1047(T) = JCM 13284(T)), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington

    Exploring Antibiotic Susceptibility, Resistome and Mobilome Structure of Planctomycetes from Gemmataceae Family

    No full text
    The family Gemmataceae accomodates aerobic, chemoorganotrophic planctomycetes with large genome sizes, is mostly distributed in freshwater and terrestrial environments. However, these bacteria have recently also been found in locations relevant to human health. Since the antimicrobial resistance genes (AMR) from environmental resistome have the potential to be transferred to pathogens, it is essential to explore the resistant capabilities of environmental bacteria. In this study, the reconstruction of in silico resistome was performed for all nine available gemmata genomes. Furthermore, the genome of the newly isolated yet-undescribed strain G18 was sequenced and added to all analyses steps. Selected genomes were screened for the presence of mobile genetic elements. The flanking location of mobilizable genomic milieu around the AMR genes was of particular interest since such colocalization may appear to promote the horizontal gene transfer (HGT) events. Moreover the antibiotic susceptibility profile of six phylogenetically distinct strains of Gemmataceae planctomycetes was determined

    One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a <i>Methylocapsa</i>-like Bacterium from a Subarctic Soil

    No full text
    The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones

    Rokubacteria in Northern Peatlands: Habitat Preferences and Diversity Patterns

    No full text
    Rokubacteria is a phylogenetic clade of as-yet-uncultivated prokaryotes, which are detected in diverse terrestrial habitats and are commonly addressed as members of the rare biosphere. This clade was originally described as a candidate phylum; however, based on the results of comparative genome analysis, was later defined as the order-level lineage, Rokubacteriales, within the phylum Methylomirabilota. The physiology and lifestyles of these bacteria are poorly understood. A dataset of 16S rRNA gene reads retrieved from four boreal raised bogs and six eutrophic fens was examined for the presence of the Rokubacteriales; the latter were detected exclusively in fens. Their relative abundance varied between 0.2 and 4% of all bacteria and was positively correlated with pH, total nitrogen content, and availability of Ca and Mg. To test an earlier published hypothesis regarding the presence of methanotrophic capabilities in Rokubacteria, peat samples were incubated with 10% methane for four weeks. No response to methane availability was detected for the Rokubacteriales, while clear a increase in relative abundance was observed for the conventional Methylococcales methanotrophs. The search for methane monooxygenase encoding genes in 60 currently available Rokubacteriales metagenomes yielded negative results, although copper-containing monooxygenases were encoded by some members of this order. This study suggests that peat-inhabiting Rokubacteriales are neutrophilic non-methanotrophic bacteria that colonize nitrogen-rich wetlands

    Growing in Saltwater: Biotechnological Potential of Novel <i>Methylotuvimicrobium</i>- and <i>Methylomarinum</i>-like Methanotrophic Bacteria

    No full text
    Methanotrophic bacteria that possess a unique ability of using methane as a sole source of carbon and energy have attracted considerable attention as potential producers of a single-cell protein. So far, this biotechnology implied using freshwater methanotrophs, although many regions of the world have limited freshwater resources. This study aimed at searching for novel methanotrophs capable of fast growth in saltwater comparable in composition with seawater. A methane-oxidizing microbial consortium containing Methylomarinum- and Methylotuvimicrobium-like methanotrophs was enriched from sediment from the river Chernavka (water pH 7.5, total salt content 30 g L−1), a tributary river of the hypersaline Lake Elton, southern Russia. This microbial consortium, designated Ch1, demonstrated stable growth on natural gas in a bioreactor in media with a total salt content of 23 to 35.9 g L−1 at a dilution rate of 0.19–0.21 h−1. The highest biomass yield of 5.8 g cell dry weight (CDW)/L with a protein content of 63% was obtained during continuous cultivation of the consortium Ch1 in a medium with a total salt content of 29 g L−1. Isolation attempts resulted in obtaining a pure culture of methanotrophic bacteria, strain Ch1-1. The 16S rRNA gene sequence of strain Ch1-1 displayed 97.09–97.24% similarity to the corresponding gene fragments of characterized representatives of Methylomarinum vadi, methanotrophs isolated from marine habitats. The genome of strain Ch1-1 was 4.8 Mb in size and encoded 3 rRNA operons, and about 4400 proteins. The genome contained the gene cluster coding for ectoine biosynthesis, which explains the ability of strain Ch1-1 to tolerate high salt concentration
    corecore