57 research outputs found

    Aggressive Multimodality Treatment for Advanced Rectal Cancer

    Get PDF
    A case of advanced rectal cancer treated by aggressive local and systemic treatment who has survived more than 7 years from initial recurrence is presented. A 55-year-old woman was diagnosed with advanced lower rectal cancer and underwent a low anterior resection with complete removal of all regional lymph nodes and total mesorectal excision. The tumor was diagnosed as a moderately differentiated adenocarcinoma, pStage IIIB (T3, N2a, M0). Twenty-six months after the initial surgery, local recurrence in the pelvis was detected by computed tomography, and total pelvic exenteration with distal sacrectomy (TPES) was performed after systemic chemotherapy with a molecular-targeted drug. Six months after the TPES, multiple lung metastases were detected. Consequently, the patient underwent radiofrequency ablation (RFA) and chemotherapy. The disease has since been controlled for 38 months. As volume control is essential for cancer treatment, it may be important to combine appropriate local therapy with systemic therapy to metastatic or recurrent sites in order to achieve much longer disease control

    Results of Proton Beam Therapy without Concurrent Chemotherapy for Patients with Unresectable Stage III Non-small Cell Lung Cancer

    Get PDF
    Introduction:This study was performed retrospectively to evaluate the outcome of patients with stage III non-small cell lung cancer (NSCLC) after proton beam therapy (PBT) alone.Methods:The subjects were 57 patients with histologically confirmed NSCLC (stage IIIA/IIIB: 24/33) who received PBT without concurrent chemotherapy. The cohort included 32 cases of squamous cell carcinoma, 18 adenocarcinoma, and 7 non-small cell carcinoma. Lymph node metastases were N0 7, N1 5, N2 30, and N3 15. Planned total doses ranged from 50 to 84.5 GyE (median, 74 GyE).Results:Planned treatment was completed in 51 patients (89%). At the time of analysis, 20 patients were alive, and the median follow-up periods were 16.2 months for all patients and 22.2 months for survivors. The median overall survival period was 21.3 months (95% confidence interval: 14.2–28.4 months), and the 1- and 2-year overall survival rates were 65.5% (52.9–78.0%) and 39.4% (25.3–53.5%), respectively. Disease progression occurred in 38 patients, and the 1- and 2-year progression-free survival rates were 36.2% (23.1–49.4%) and 24.9% (12.7–37.2%), respectively. Local recurrence was observed in 13 patients, and the 1- and 2-year local control rates were 79.1% (66.8–91.3%) and 64.1% (47.5–80.7%), respectively. Grade ≥3 lung toxicity was seen in six patients, esophageal toxicity occurred at grade ⩽2, and there was no cardiac toxicity.Conclusion:The prognosis of patients with unresectable stage III NSCLC is poor without chemotherapy. Our data suggest that high-dose PBT is beneficial and tolerable for these patients

    Preliminary results of proton radiotherapy for pediatric rhabdomyosarcoma: a multi-institutional study in Japan

    Get PDF
    To evaluate preliminary results of proton radiotherapy (PRT) for pediatric patients with rhabdomyosarcoma (RMS). From 1987 to 2014, PRT was conducted as initial radiotherapy in 55 patients (35 males, 20 females, median age 5 years, range 0–19) with RMS at four institutes in Japan. Thirty‐one, 18, and six patients had embryonal, alveolar, and other RMS, respectively. One, 11, 37, and six patients were in IRSG groups I, II, III, and IV, respectively, and the COG risk group was low, intermediate, and high for nine, 39, and seven patients, respectively. The irradiation dose was 36–60 GyE (median: 50.4 GyE). The median follow‐up period was 24.5 months (range: 1.5–320.3). The 1‐ and 2‐year overall survival rates were 91.9% (95% CI: 84.3–99.5%) and 84.8% (95% CI 75.2–94.3%), respectively, and these rates were 100% and 100%, 97.1% and 90.1%, and 57.1% and 42.9% for COG low‐, intermediate‐, and high‐risk groups, respectively. There were 153 adverse events of Grade ≥3, including 141 hematologic toxicities in 48 patients (87%) and 12 radiation‐induced toxicities in nine patients (16%). Proton‐specific toxicity was not observed. PRT has the same treatment effect as photon radiotherapy with tolerable acute radiation‐induced toxicity

    Long-term follow-up after proton beam therapy for pediatric tumors: a Japanese national survey

    Get PDF
    Proton beam therapy (PBT) is a potential new alternative to treatment with photon radiotherapy that may reduce the risk of late toxicity and secondary cancer, especially for pediatric tumors. The goal of this study was to evaluate the long-term benefits of PBT in cancer survivors. A retrospective observational study of pediatric patients who received PBT was performed at four institutions in Japan. Of 343 patients, 62 were followed up for 5 or more years. These patients included 40 males and 22 females, and had a median age of 10 years (range: 0–19 years) at the time of treatment. The irradiation dose ranged from 10.8 to 81.2 GyE (median: 50.4 GyE). The median follow-up period was 8.1 years (5.0–31.2 years). The 5-, 10- and 20-year rates for grade 2 or higher late toxicities were 18%, 35% and 45%, respectively, and those for grade 3 or higher late toxicities were 6%, 17% and 17% respectively. Univariate analysis showed that the irradiated site (head and neck, brain) was significantly associated with late toxicities. No malignant secondary tumors occurred within the irradiated field. The 10- and 20-year cumulative rates for all secondary tumors, malignant secondary tumors, and malignant nonhematologic secondary tumors were 8% and 16%, 5% and 13%, and 3% and 11%, respectively. Our data indicate that PBT has the potential to reduce the risk of late mortality and secondary malignancy. Longer follow-up is needed to confirm the benefits of PBT for pediatric tumors

    Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI

    Get PDF
    BackgroundUnderstanding the irradiated area and dose correctly is important for the reirradiation of organs that deform after irradiation, such as the liver. We investigated the spatial registration error using the deformable image registration (DIR) software products MIM Maestro (MIM) and Velocity AI (Velocity).MethodsImage registration of pretreatment computed tomography (CT) and posttreatment CT was performed in 24 patients with liver tumors. All the patients received proton beam therapy, and the follow-up period was 4–14 (median: 10) months. We performed DIR of the pretreatment CT and compared it with that of the posttreatment CT by calculating the dislocation of metallic markers (implanted close to the tumors).ResultsThe fiducial registration error was comparable in both products: 0.4–32.9 (9.3 ± 9.9) mm for MIM and 0.5–38.6 (11.0 ± 10.0) mm for Velocity, and correlated with the tumor diameter for MIM (r = 0.69, P = 0.002) and for Velocity (r = 0.68, P = 0.0003). Regarding the enhancement effect, the fiducial registration error was 1.0–24.9 (7.4 ± 7.7) mm for MIM and 0.3–29.6 (8.9 ± 7.2) mm for Velocity, which is shorter than that of plain CT (P = 0.04, for both).ConclusionsThe DIR performance of both MIM and Velocity is comparable with regard to the liver. The fiducial registration error of DIR depends on the tumor diameter. Furthermore, contrast-enhanced CT improves the accuracy of both MIM and Velocity

    Proton Beam Therapy for Large Hepatocellular Carcinoma

    Get PDF
    PurposeTo investigate the safety and efficacy of proton beam therapy (PBT) in patients with large hepatocellular carcinoma (HCC).Methods and MaterialsTwenty-two patients with HCC larger than 10 cm were treated with proton beam therapy at our institution between 1985 and 2006. Twenty-one of the 22 patients were not surgical candidates because of advanced HCC, intercurrent disease, or old age. Median tumor size was 11 cm (range, 10–14cm), and median clinical target volume was 567 cm3 (range, 335–1,398 cm3). Hepatocellular carcinoma was solitary in 18 patients and multifocal in 4 patients. Tumor types were nodular and diffuse in 18 and 4 patients, respectively. Portal vein tumor thrombosis was present in 11 patients. Median total dose delivered was 72.6 GyE in 22 fractions (range, 47.3–89.1 GyE in 10–35 fractions).ResultsThe median follow-up period was 13.4 months (range, 1.5–85 months). Tumor control rate at 2 years was 87%. One-year overall and progression-free survival rates were 64% and 62%, respectively. Two-year overall and progression-free survival rates were 36% and 24%, respectively. The predominant tumor progression pattern was new hepatic tumor development outside the irradiated field. No late treatment-related toxicity of Grade 3 or higher was observed.ConclusionsThe Bragg peak properties of PBT allow for improved conformality of the treatment field. As such, large tumor volumes can be irradiated to high doses without significant dose exposure to surrounding normal tissue. Proton beam therapy therefore represents a promising modality for the treatment of large-volume HCC. Our study shows that PBT is an effective and safe method for the treatment of patients with large HCC
    corecore