17 research outputs found

    Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita

    Get PDF
    The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt− and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt− MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae

    Genome-wide profiling of DNA methylation in human cancer cells

    Get PDF
    AbstractGlobal changes in DNA methylation correlate with altered gene expression and genomic instability in cancer. We have developed a methylation-specific digital sequencing (MSDS) method that can assess DNA methylation on a genomic scale. MSDS is a simple, low-cost method that combines the use of methylation-sensitive restriction enzymes with second generation sequencing technology. DNA methylation in two colon cancer cell lines, HT29 and HCT116, was measured using MSDS. When methylation levels were compared between the two cell lines, many differentially methylated regions (DMRs) were identified in CpG island shore regions (located within 2kb of a CpG island), gene body regions and intergenic regions. The number of DMRs in the vicinity of gene transcription start sites correlated with the level of expression of TACC1, CLDN1, and PLEKHC1 (FERMT2) genes, which have been linked to carcinogenesis. The MSDS method has the potential to provide novel insight into the functional complexity of the human genome

    cls224.dvi

    No full text
    A novel β-myosin heavy chain gene mutation, p.Met531Arg, identified in isolated left ventricular non-compaction in humans, results in left ventricular hypertrophy that progresses to dilation in a mouse model A B S T R A C T Mutations in the βMHC (β-myosin heavy chain), a sarcomeric protein are responsible for hypertrophic and dilated cardiomyopathy. However, the mechanisms whereby distinct mutations in the βMHC gene cause two kinds of cardiomyopathy are still unclear. In the present study we report a novel βMHC mutation found in a patient with isolated LVNC [LV (left ventricular) non-compaction] and the phenotype of a mouse mutant model carrying the same mutation. To find the mutation responsible, we searched for genomic mutations in 99 unrelated probands with dilated cardiomyopathy and five probands with isolated LVNC, and identified a p.Met531Arg mutation in βMHC in a 13-year-old girl with isolated LVNC. Next, we generated six lines of transgenic mice carrying a p.Met532Arg mutant αMHC gene, which was identical with the p.Met531Arg mutation in the human βMHC. Among these, two lines with strong expression of the mutant αMHC gene were chosen for further studies. Although they did not exhibit the features characteristic of LVNC, approx. 50 % and 70 % of transgenic mice in each line displayed LVH (LV hypertrophy) by 2-3 months of age. Furthermore, LVD (LV dilation) developed in approx. 25 % of transgenic mice by 18 months of age, demonstrating biphasic changes in LV wall thickness. The present study supports the idea that common mechanisms may be involved in LVH and LVD. The novel mouse model generated can provide important information for the understanding of the pathological processes and aetiology of cardiac dilation in humans
    corecore