5 research outputs found

    Resveratrol protects against copper and iron toxicity in Drosophila melanogaster

    Get PDF
    Background Copper (Cu) and iron (Fe) are essential trace elements that when in excess are capable of causing cytotoxic effects leading to lipid peroxidation and promoting oxidative stress. Resveratrol (RES) is a natural polyphenol with antioxidant and anti-inflammatory properties. This study was carried out to evaluate the protective role of RES in Fe and Cu sulphate-induced oxidative stress in Drosophila melanogaster. Methods Adult wild type flies were fed Cu2+ and Fe2+ (1 mM each) and/or RES (30 and 60 mg/kg diet) for 7 days. Survival, negative geotaxis and emergence rate were evaluated by daily recording of fruit fly mortality and final analysis. Fruit flies were anaesthetized using CO2 gas, homogenized and centrifuged at 4,000 rpm for 10 minutes at 4 °C. Aliquots of the supernatants were used for the estimation of biochemical markers using spectrophotometry. Results Fruit flies co-treated with FeSO4 + CuSO4 (1 mM each) + RES (30 and 60 mg/Kg) significantly elevated H2O2, NO, lipid peroxidation, acetylcholinesterase as well as GSH, GST, catalase and total thiols (p<0.05) compared with the Cu2+ + Fe2+ (1mM each) treated group. Flies co-treated with FeSO4 + CuSO4 (1mM each) + RES (30 and 60mg/Kg) also had significantly improved (p< 0.05) eclosion and climbing rates compared with the Cu2+ + Fe2+ (1mM each) treated group. Conclusion This study demonstrated that RES reduced Cu2+ and Fe2+-induced radical generation in D. melanogaster and improved the antioxidant buffering capability of the flies. Therefore, RES could be used in management of disorders involving oxidative stress

    Molecular surveillance of arboviruses in Nigeria

    No full text
    Abstract Arboviral infections are fast becoming a global public health concern as a result of its high fatality rate and sporadic spread. From the outbreak of Zika virus in the Americas, the endemicity of Yellow fever in West Africa and South America, outbreaks of West Nile virus in South Africa to the year-round and national risk of Dengue fever in Mainland China and India. The war against emerging and re-emerging viral infection could probably lead to the next pandemic. To be above the pending possible arboviral pandemic, consistent surveillance of these pathogens is necessary in every society. This study was aimed at conducting a surveillance for Yellow fever virus, Zika virus, Chikungunya virus, Dengue virus and Rift Valley fever virus in four states in Nigeria using molecular techniques. A cross-sectional study involving 1600 blood samples collected from febrile patients in Lagos, Kwara, Ondo and Delta States between 2018 and 2021 was conducted using Real time polymerase chain reaction for detection of the pathogens. Extraction and purification of viral RNA were done using Qiagen Viral RNA Mini Kit. Samples were analyzed using One Step PrimeScript III RT-PCR mix (Takara Bio) alongside optimized primers and probes designed in-house. Positive samples were sequenced on MinION platform (Nanopore technologies). Bioinformatic and phylogenetic analysis were performed with DNASTAR Lasergene 17.3. All the RNA extracted from samples collected from the four states were negative for ZIKV RNA, RVFV RNA, CHIKV RNA and DENV RNA. However, twelve of the samples (2%) tested positive for YFV RNA. Three full genomes of sizes 10,751 bp, 10,500 bp and 10,715 bp were generated and deposited in GenBank with accession numbers: ON323052, ON323053 and ON323054 respectively. Phylogenetic analysis shows clustering within lineage 3 of West African genotype. This result shows an active spread of Yellow fever in Delta State, Nigeria. However, there is no emergence of a new genotype There is a need for an intense surveillance of Yellow fever virus in Nigeria to avert a major outbreak
    corecore