2 research outputs found

    An investigation into the vulnerability of UK butterflies to extreme climatic events associated with increasing climate change

    Get PDF
    Climate change while associated with change a in the mean climate also presents itself as a change in the variance of climate, resulting in an increase in the number of extreme climatic events (ECEs). Increased numbers of hot days, droughts and extreme precipitation events are all predicted under future climate scenarios. To date, there is very little understanding as to the potential effects that this may have on biodiversity. In order to model the future impacts of ECEs on biodiversity and to inform conservationists about the most appropriate mitigation strategies, we need to understand how ECEs have impacted species in the past, which species are sensitive and why? Finally, can factors such as habitat and topography play a role in reducing the impact of ECEs? This thesis aims to advance the knowledge relating to the above questions by examining their impact on UK butterflies, a bioindicator group. This study developed a novel approach to identifying statistically identified, biologically relevant ECEs (heat, cold, precipitation and drought). Research into the impact of ECEs on yearly population change, localised declines and widespread decline events, identified that UK butterflies are particularly vulnerable to extreme heat during the overwintering phase, while tUK butterflies find extreme heat beneficial during their adult phase and finally are negatively impacted upon by precipitation extremes during their adult life stage. Chapter 4 of this thesis found that increasing slope heterogeneity in association with increased habitat diversity buffered butterflies against widespread declines associated with ECEs. Finally, chapter 5 of this thesis found that butterfly families respond differently when accounting for all extremes across all life stages, but that life history traits such as dispersal and number of larval host plants can be used to predict a species sensitivity to various ECEs

    Identifying opportunities for transboundary conservation in Africa

    Get PDF
    The conservation of natural and cultural resources shared between countries is a significant challenge that can be addressed through the establishment of transboundary conservation areas (TBCAs). TBCAs enable countries to harmonize cross-border governance and management, increase protected area (PA) coverage, and strengthen relationships between neighbouring countries and communities. In Africa, many ecosystems and species ranges span multiple countries, making TBCAs a crucial tool for biodiversity conservation. However, there is a lack of research on where TBCAs can be established or need to be established. To address this gap, we conducted a study to identify opportunities for establishing TBCAs in Africa. We first compiled an up-to-date list of existing TBCAs on the continent. Then, we identified potential TBCAs by identifying protected areas next to country borders that are adjacent to other protected areas in a neighbouring country. We also evaluated the functional connectivity between these PA pairs and prioritized potential TBCAs based on size, connectivity, and ease of establishment. We identified 27 existing TBCAs and 8,481 potential TBCAs in Africa composed of various possible combinations of 2,326 individual PAs. Our results provide a baseline of existing TBCAs and offer a better understanding of where transboundary conservation might be established or strengthened. We also highlight areas where future transboundary conservation efforts could safeguard PA connectivity. This information can guide policy and decision-making processes towards promoting conservation and sustainable use of natural and cultural resources shared between countries in Africa
    corecore