4 research outputs found

    Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O

    Full text link
    This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split nonlinearly under the magnetic field. Excitonic shifts are determined by the s,p-d exchange coupling to magnetic ions, by the electron-hole s-p exchange, and the spin-orbit interactions. A quantitative description of the magnetoreflectivity findings indicates that the free excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands, respectively, the order reversed as compared to wurtzite GaN. Furthermore, our results show that the magnitude of the giant exciton splittings, specific to dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what points to small and positive N_0 beta. It is shown that both the increase of the gap with x and the small positive value of the exchange energy N_0 beta corroborate recent theory describing the exchange splitting of the valence band in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure

    Carbon-Encapsulated Magnetic Nanoparticles Based on Fe, Mn, and Cr for Spintronics Applications

    No full text
    We succeeded in the arc-plasma synthesis of carbon-encapsulated Fe, Cr, and Mn-based nanoparticles. The transmission electron microscopy, Mössbauer spectra (of iron) and SQUID magnetometry results demonstrate that the products of the synthesis contain metals and its carbides. The nanoparticles show ferromagnetic or superparamagnetic behavior at high temperatures, which is demanded for nano-spintronics applications

    New Self-Organization Route to Tunable Narrowband Optical Filters and Polarizers Demonstrated with ZnO–ZnWO4 Eutectic Composite

    No full text
    Electromagnetic fields interacting with microscopic structural features in a composite material provide emerging optical properties that surpass those offered by the individual components. However, composite materials can be generally lossy due to the scattering effects induced by inhomogeneities at the interfaces between different compounds. To overcome such problems, complicated and costly manufacturing procedures, such as top-down approaches, are generally required. In contrast, here ZnO–ZnWO4 eutectic self-organized composites grown by the micropulling method are considered, displaying sharp and strongly polarized transmission at 397 nm. Such an optical response is notable because it is not observed in either ZnO or ZnWO4 single crystals. The optical response is due to the refractive index matching of the two constituents, which self-organize into ordered structures via a micropulling down method. The optical behavior reported here can directly lead to applications, such as tunable narrowband filters with bandpass of 3 nm and polarizers, paving the way to a new self-organization route for manufacturing optical components
    corecore