27 research outputs found

    Grazing by manatees excludes both new and established wild celery transplants: Implications for restoration in Kings Bay, FL, USA

    Get PDF
    We conducted a field experiment between August 2001 and February 2002 in Kings Bay, FL, USA, designed to determine whether the amount of time allowed for wild celery (Vallisneria americana Michx) transplants to establish altered the effect of herbivorous manatees (Trichechus manatus L.)on their survival

    Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of15N tracer field studies

    Get PDF
    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (<1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C : N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha−1·yr−1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer additio

    Lessons from the establishment of exotic species: a meta-analytical case study using birds

    No full text
    1. The establishment of species outside their natural geographical ranges is an important driver of changes in global biodiversity. This creates an imperative to understand why some species are more successful than others at establishing viable populations following introduction. 2. Historical data are particularly useful in this regard, and those for birds especially comprehensive. This has resulted in the publication of regional-scale studies that have used these data to attempt to quantify relationships between establishment success and characteristics of bird introductions. 3. We use a meta-analytical approach to summarize quantitatively the results of these studies, and to assess the influence of variables invoked to explain the variation in establishment success in birds. 4. We find that variables describing characteristics specific to the individual introduction event (i.e. event-level variables), such as introduction effort (or 'propagule pressure'), are the most consistent predictors of establishment success. © 2005 British Ecological Society.Phillip Cassey, Tim M. Blackburn, Richard P. Duncan and Julie L. Lockwoo

    Crayfish in lakes and streams: individual and population responses to predation, productivity and substratum availability

    No full text
    1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4 parts per thousand) and a two-source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom-up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom-up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance
    corecore