45 research outputs found

    A Multi-Dimensional Approach for Framing Crowdsourcing Archetypes

    Get PDF
    All different kinds of organizations – business, public, and non-governmental alike – are becoming aware of a soaring complexity in problem solving, decision making and idea development. In a multitude of circumstances, multidisciplinary teams, high-caliber skilled resources and world-class computer suites do not suffice to cope with such a complexity: in fact, a further need concerns the sharing and ‘externalization’ of tacit knowledge already existing in the society. In this direction, participatory tendencies flourishing in the interconnected society in which we live today lead ‘collective intelligence’ to emerge as key ingredient of distributed problem solving systems going well beyond the traditional boundaries of organizations. Resulting outputs can remarkably enrich decision processes and creative processes carried out by indoor experts, allowing organizations to reap benefits in terms of opportunity, time and cost. Taking stock of the mare magnum of promising opportunities to be tapped, of the inherent diversity lying among them, and of the enormous success of some initiative launched hitherto, the thesis aspires to provide a sound basis for the clear comprehension and systematic exploitation of crowdsourcing. After a thorough literature review, the thesis explores new ways for formalizing crowdsourcing models with the aim of distilling a brand-new multi-dimensional framework to categorize various crowdsourcing archetypes. To say it in a nutshell, the proposed framework combines two dimensions (i.e., motivations to participate and organization of external solvers) in order to portray six archetypes. Among the numerous significant elements of novelty brought by this framework, the prominent one is the ‘holistic’ approach that combines both profit and non-profit, trying to put private and public sectors under a common roof in order to examine in a whole corpus the multi-faceted mechanisms for mobilizing and harnessing competence and expertise which are distributed among the crowd. Looking at how the crowd may be turned into value to be internalized by organizations, the thesis examines crowdsourcing practices in the public as well in the private sector. Regarding the former, the investigation leverages the experience into the PADGETS project through action research – drawing on theoretical studies as well as on intensive fieldwork activities – to systematize how crowdsourcing can be fruitfully incorporated into the policy lifecycle. Concerning the private realm, a cohort of real cases in the limelight is examined – having recourse to case study methodology – to formalize different ways through which crowdsourcing becomes a business model game-changer. Finally, the two perspectives (i.e., public and private) are coalesced into an integrated view acting as a backdrop for proposing next-generation governance model massively hinged on crowdsourcing. In fact, drawing on archetypes schematized, the thesis depicts a potential paradigm that government may embrace in the coming future to tap the potential of collective intelligence, thus maximizing the utilization of a resource that today seems certainly underexploited

    Modelling the evolution of transcription factor binding preferences in complex eukaryotes

    Get PDF
    Transcription factors (TFs) exert their regulatory action by binding to DNA with specific sequence preferences. However, different TFs can partially share their binding sequences due to their common evolutionary origin. This `redundancy' of binding defines a way of organizing TFs in `motif families' by grouping TFs with similar binding preferences. Since these ultimately define the TF target genes, the motif family organization entails information about the structure of transcriptional regulation as it has been shaped by evolution. Focusing on the human TF repertoire, we show that a one-parameter evolutionary model of the Birth-Death-Innovation type can explain the TF empirical ripartition in motif families, and allows to highlight the relevant evolutionary forces at the origin of this organization. Moreover, the model allows to pinpoint few deviations from the neutral scenario it assumes: three over-expanded families (including HOX and FOX genes), a set of `singleton' TFs for which duplication seems to be selected against, and a higher-than-average rate of diversification of the binding preferences of TFs with a Zinc Finger DNA binding domain. Finally, a comparison of the TF motif family organization in different eukaryotic species suggests an increase of redundancy of binding with organism complexity.Comment: 14 pages, 5 figures. Minor changes. Final version, accepted for publicatio

    Stochastic timing in gene expression for simple regulatory strategies

    Get PDF
    Timing is essential for many cellular processes, from cellular responses to external stimuli to the cell cycle and circadian clocks. Many of these processes are based on gene expression. For example, an activated gene may be required to reach in a precise time a threshold level of expression that triggers a specific downstream process. However, gene expression is subject to stochastic fluctuations, naturally inducing an uncertainty in this threshold-crossing time with potential consequences on biological functions and phenotypes. Here, we consider such "timing fluctuations", and we ask how they can be controlled. Our analytical estimates and simulations show that, for an induced gene, timing variability is minimal if the threshold level of expression is approximately half of the steady-state level. Timing fuctuations can be reduced by increasing the transcription rate, while they are insensitive to the translation rate. In presence of self-regulatory strategies, we show that self-repression reduces timing noise for threshold levels that have to be reached quickly, while selfactivation is optimal at long times. These results lay a framework for understanding stochasticity of endogenous systems such as the cell cycle, as well as for the design of synthetic trigger circuits.Comment: 10 pages, 5 figure

    Gene autoregulation via intronic microRNAs and its functions

    Get PDF
    Background: MicroRNAs, post-transcriptional repressors of gene expression, play a pivotal role in gene regulatory networks. They are involved in core cellular processes and their dysregulation is associated to a broad range of human diseases. This paper focus on a minimal microRNA-mediated regulatory circuit, in which a protein-coding gene (host gene) is targeted by a microRNA located inside one of its introns. Results: Autoregulation via intronic microRNAs is widespread in the human regulatory network, as confirmed by our bioinformatic analysis, and can perform several regulatory tasks despite its simple topology. Our analysis, based on analytical calculations and simulations, indicates that this circuitry alters the dynamics of the host gene expression, can induce complex responses implementing adaptation and Weber's law, and efficiently filters fluctuations propagating from the upstream network to the host gene. A fine-tuning of the circuit parameters can optimize each of these functions. Interestingly, they are all related to gene expression homeostasis, in agreement with the increasing evidence suggesting a role of microRNA regulation in conferring robustness to biological processes. In addition to model analysis, we present a list of bioinformatically predicted candidate circuits in human for future experimental tests. Conclusions: The results presented here suggest a potentially relevant functional role for negative self-regulation via intronic microRNAs, in particular as a homeostatic control mechanism of gene expression. Moreover, the map of circuit functions in terms of experimentally measurable parameters, resulting from our analysis, can be a useful guideline for possible applications in synthetic biology.Comment: 29 pages and 7 figures in the main text, 18 pages of Supporting Informatio

    Statistics of shared components in complex component systems

    Get PDF
    Many complex systems are modular. Such systems can be represented as "component systems", i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and non-trivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system-realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system-realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.Comment: 18 pages, 7 main figures, 7 supplementary figure

    Heaps' law, statistics of shared components and temporal patterns from a sample-space-reducing process

    Get PDF
    Zipf's law is a hallmark of several complex systems with a modular structure, such as books composed by words or genomes composed by genes. In these component systems, Zipf's law describes the empirical power law distribution of component frequencies. Stochastic processes based on a sample-space-reducing (SSR) mechanism, in which the number of accessible states reduces as the system evolves, have been recently proposed as a simple explanation for the ubiquitous emergence of this law. However, many complex component systems are characterized by other statistical patterns beyond Zipf's law, such as a sublinear growth of the component vocabulary with the system size, known as Heap's law, and a specific statistics of shared components. This work shows, with analytical calculations and simulations, that these statistical properties can emerge jointly from a SSR mechanism, thus making it an appropriate parameter-poor representation for component systems. Several alternative (and equally simple) models, for example based on the preferential attachment mechanism, can also reproduce Heaps' and Zipf's laws, suggesting that additional statistical properties should be taken into account to select the most-likely generative process for a specific system. Along this line, we will show that the temporal component distribution predicted by the SSR model is markedly different from the one emerging from the popular rich-gets-richer mechanism. A comparison with empirical data from natural language indicates that the SSR process can be chosen as a better candidate model for text generation based on this statistical property. Finally, a limitation of the SSR model in reproducing the empirical "burstiness" of word appearances in texts will be pointed out, thus indicating a possible direction for extensions of the basic SSR process.Comment: 14 pages, 4 figure

    Evaluating Advanced Forms of Social Media Use in Government

    Get PDF
    Government agencies gradually start moving from simpler to more advanced forms of social media use, which are characterized by higher technological and political complexity. It is important to evaluate systematically these efforts based on sound theoretical foundations. In this direction this paper outlines and evaluates an advanced form of automated and centrally managed combined use of multiple social media by government agencies for promoting participative public policy making. For this purpose an evaluation framework has been developed, which includes both technological and political evaluation, and focuses on the fundamental complexities and challenges of these advanced forms of social media exploitation. It has been used for the evaluation of a pilot application of this approach for conducting a consultation campaign concerning the large scale application of a telemedicine program in Piedmont, Italy, revealing its important potential and strengths, and at the same time some notable problems and weaknesses as well

    Knowledge Graph Embeddings with node2vec for Item Recommendation

    Get PDF
    In the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. Graph embeddings algorithms have shown to be able to automatically learn high quality feature vectors from graph structures, enabling vector-based measures of node relatedness. In this paper, we show how node2vec can be used to generate item recommendations by learning knowledge graph embeddings. We apply node2vec on a knowledge graph built from the MovieLens 1M dataset and DBpedia and use the node relatedness to generate item recommendations. The results show that node2vec consistently outperforms a set of collaborative filtering baselines on an array of relevant metric

    An empirical comparison of knowledge graph embeddings for item recommendation

    Get PDF
    In the past years, knowledge graphs have proven to be beneficial for recommender systems, efficiently addressing paramount issues such as new items and data sparsity. At the same time, several works have recently tackled the problem of knowledge graph completion through machine learning algorithms able to learn knowledge graph embeddings. In this paper, we show that the item recommendation problem can be seen as a specific case of knowledge graph completion problem, where the “feedback” property, which connects users to items that they like, has to be predicted. We empirically compare a set of state-of-the-art knowledge graph embeddings algorithms on the task of item recommendation on the Movielens 1M dataset. The results show that knowledge graph embeddings models outperform traditional collaborative filtering baselines and that TransH obtains the best performance
    corecore