8 research outputs found
Aprendizagem de máquina para identificação de plantas de soja sob ataque de insetos usando dados hiperespectrais.
A integração entre as áreas de sensoriamento remoto e machine learning tem permitido um avanço na forma de mapeamento de campos agrícolas e monitoramento de culturas. Este trabalho investiga a capacidade de algoritmos de aprendizagem de máquina em classificar plantas de soja sob ataque de insetos, utilizando medidas de espectroscopia de refletância coletadas ao nível foliar. Para tanto, desenvolveu-se testes com diferentes algoritmos utilizando um conjunto de 991 curvas espectrais referentes à planta de soja saudável e sob ataque de pragas, coletadas em oito dias consecutivos. Essas curvas foram medidas pela equipe da EMBRAPA, usando um espectrorradiômetro portátil, que registra no intervalo de 350 a 2500 nm. Tais curvas foram, inicialmente, pré-processadas para a remoção das regiões de absorção atmosférica pelo vapor d?água, e em seguida subdividida em conjunto de treino, validação e teste dos algoritmos de aprendizagem de máquina. Utilizou-se o interpretador Google Collabs e os algoritmos foram inscritos em linguagem Python, utilizando bibliotecas, como a Skit Sklearn. Dentre os algoritmos utilizados, tem-se Random Forest, Decision Tree, Support Vector Machine, Logistic Regression e Extra-Tree. O Extra-tree tem melhor desempenho (F1-score = 80,40%; precision = 81%; recall = 80%) na tarefa proposta. Conclui-se que é possível processar medidas de espectroscopia de refletância com algoritmos de aprendizagem de máquina para se monitorar o ataque por insetos em plantas de soja. Recomenda-se que a abordagem aplicada seja testada em outras culturas
Aplicando Mineração de Imagens na Agricultura de Precisão.
RESUMO: Análise de imagens de plantações estão consolidados no mercado da agricultura de precisão. Nesse sentido, a utilização de técnicas de processamento de imagem, mineração de imagem e inteligência artificial são ferramentas fundamentais. Podendo aplicar essas técnicas de maneira individual ou em conjunto. Um problema comum em análises de imagens é que pequenas mudanças na iluminação e no momento de tirar fotos podem influenciar como as técnicas computacionais identificam seus elementos. O custo é muito alto ou mesmo inviável para identificar ou segmentar uma imagem de forma universal. Sendo assim, é necessário um ponto de partida solido para guiar as técnicas existentes. Este estudo apresenta um experimento utilizando técnicas de mineração de imagens, associado a algoritmos de associação customizado. Utilizando o conhecimento do especialista para criar e rotular conjunto de pixel de interesse. Assim, ao processar uma imagem as classes de interesse são facilmente identificadas e ajustadas para cada realidade. Os resultados empíricos indicam que nossa solução aprimora a forma de seleção de padrões identificando as classes de interesse, identificando de maneira correta solo e vegetação. Os testes foram realizados em sete mosaicos diferentes da mesma plantação. O processo de identificação das classes desejadas (solo, plantação), ocorreram de maneira satisfatória validado assim nosso estudo como uma solução viável para agricultura de precisão. ABSTRACT: Crop image analysis are consolidated in the precision farming market. In this sense, the use of image processing techniques, image mining and artificial intelligence are fundamental tools. Being able to apply these techniques individually or together. A common problem in image analysis is that small changes in lighting and timing can influence how computational techniques identify its elements. The cost is too high or even unfeasible to universally identify or segment an image. As such, a solid starting point is needed to guide existing techniques. This study presents an experiment using image mining techniques, associated with custom association algorithms. Using expert knowledge to create and label pixel set of interest. Thus, when processing an image, the classes of interest are easily identified and adjusted for each reality. The empirical results indicate that our solution improves the way of selecting patterns by identifying the classes of interest, correctly identifying soil and vegetation. Tests were performed on seven different mosaics from the same culture. The process of identifying the desired classes (soil, plantation) occurred satisfactorily, thus validating our study as a viable solution for precision agriculture
Convolutional Neural Networks to Estimate Dry Matter Yield in a Guineagrass Breeding Program Using UAV Remote Sensing.
Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits. The main goal of this study was to propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional agronomic methodology and considered as the ground-truth data. Different CNN architectures were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits. Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha−1 for LDMY and from 413.07 to 506.56 kg·ha−1 for TDMY. All the CNNs generated heritable HTP traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in forage breeding programs
An impact analysis of pre-processing techniques in spectroscopy data to classify insect-damaged in soybean plants with machine and deep learning methods.
Na publicação: Maria Carolina Blassioli-Moraes