63 research outputs found

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations

    Get PDF
    The desert is an excellent model for studying evolution under extreme environments. We present here the complete genome and ultraviolet (UV) radiation-induced transcriptome of Deinococcus gobiensis I-0, which was isolated from the cold Gobi desert and shows higher tolerance to gamma radiation and UV light than all other known microorganisms. Nearly half of the genes in the genome encode proteins of unknown function, suggesting that the extreme resistance phenotype may be attributed to unknown genes and pathways. D. gobiensis also contains a surprisingly large number of horizontally acquired genes and predicted mobile elements of different classes, which is indicative of adaptation to extreme environments through genomic plasticity. High-resolution RNA-Seq transcriptome analyses indicated that 30 regulatory proteins, including several well-known regulators and uncharacterized protein kinases, and 13 noncoding RNAs were induced immediately after UV irradiation. Particularly interesting is the UV irradiation induction of the phrB and recB genes involved in photoreactivation and recombinational repair, respectively. These proteins likely include key players in the immediate global transcriptional response to UV irradiation. Our results help to explain the exceptional ability of D. gobiensis to withstand environmental extremes of the Gobi desert, and highlight the metabolic features of this organism that have biotechnological potential

    In vivo inhibition of TonB-dependent processes by a TonB box consensus pentapeptide.

    No full text
    The TonB box, a conserved pentapeptide sequence found in TonB-dependent colicins and receptors, is thought to interact physically with the TonB protein to facilitate TonB-dependent processes. Strains of Escherichia coli were treated in vivo with the synthetic TonB box pentapeptide Glu-Thr-Val-Ile-Val. The pentapeptide inhibited several TonB-dependent processes, including cell growth in low-iron medium, phi 80 infection, and killing by colicins B and Ia. Two unrelated control pentapeptides had no effect on TonB-dependent processes

    Activity of Two Strong Promoters Cloned into Bacillus subtilis

    No full text

    Drug-induced relaxation of supercoiled plasmid DNA in Bacillus subtilis and induction of the SOS response.

    No full text
    Whereas treatment with many different drugs led to induction of the SOS response in Bacillus subtilis, only inhibitors of DNA gyrase subunit B and, unexpectedly, polyether antibiotics (membrane ionophores) led to relaxation of supercoiled plasmid DNA. However, treatment with DNA gyrase subunit B inhibitors but not with polyethers led to SOS induction. Thus, the presence of underwound supercoiled DNA was not sufficient to induce the SOS response. Possible mechanisms by which polyethers induce relaxation of supercoiled DNA in vivo are discussed
    • …
    corecore