43 research outputs found

    Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance

    Get PDF
    A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identifying these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present the development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute-infection plasma of 44 humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have the potential to inform new strategies for vaccine development by identifying broadly neutralizing antibody combinations in plasma associated with the natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials

    Single hepatocytes show persistence and transcriptional inactivity of hepatitis B

    Get PDF
    © 2020, Balagopal et al. This is an open access article published under the terms of the Creative Commons Attribution 4.0 International License.There is no cure for the more than 270 million people chronically infected with HBV. Nucleos(t)ide analogs (NUCs), the mainstay of anti-HBV treatment, block HBV reverse transcription. NUCs do not eliminate the intranuclear covalently closed circular DNA (cccDNA), from which viral RNAs, including pregenomic RNA (pgRNA), are transcribed. A key gap in designing a cure is understanding how NUCs affect HBV replication and transcription because serum markers yield an incomplete view of intrahepatic HBV. We applied single-cell laser capture microdissection and droplet digital PCR to paired liver biopsies collected from 5 HBV/HIV-coinfected persons who took NUCs over 2-4 years. From biopsy 1 to 2, proportions of HBV-infected hepatocytes declined with adherence to NUC treatment (P < 0.05); we extrapolated that eradication of HBV will take over 10 decades with NUCs in these participants. In individual hepatocytes, pgRNA levels diminished 28- to 73-fold during NUC treatment, corresponding with decreased tissue HBV core antigen staining (P < 0.01). In 4 out of 5 participants, hepatocytes with cccDNA but undetectable pgRNA (transcriptionally inactive) were present, and these were enriched in 3 participants during NUC treatment. Further work to unravel mechanisms of cccDNA transcriptional inactivation may lead to therapies that can achieve this in all hepatocytes, resulting in a functional cure.info:eu-repo/semantics/publishedVersio

    Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice

    No full text
    Loss of NF-E2-related factor 2 (Nrf2) signaling increases susceptibility to acute toxicity, inflammation and carcinogenesis in mice due to the inability to mount adaptive responses. In contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice, although inactivating mutations in Keap1 have been identified recently in some human cancers. Global characterization of Nrf2 activation is important to exploit this pathway for chemoprevention in healthy, yet at-risk individuals and also to elucidate the consequences of hijacking the pathway in Keap1-mutant human cancers. Liver-targeted conditional Keap1-null, Albumin-Cre:Keap1(flox/-) (CKO) mice provide a model of genetic activation of Nrf2 signaling. By coupling global gene expression analysis of CKO mice with analysis of pharmacologic activation using the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1, 9(11)-dien-28-oyl]imidazole (CDDO-Im), we are able to gain insight into pathways affected by Nrf2 activation. CDDO-Im is an extremely potent activator of Nrf2 signaling. CKO mice were used to identify genes modulated by genetic activation of Nrf2 signaling. The CKO response was compared with hepatic global gene expression changes in wild-type mice treated with CDDO-Im at a maximal Nrf2 activating dose. The results show that genetic and pharmacologic activation of Nrf2 signaling modulates pathways beyond detoxication and cytoprotection, with the largest cluster of genes associated with lipid metabolism. Genetic activation of Nrf2 results in much larger numbers of detoxication and lipid metabolism gene changes. Additionally, analysis of pharmacologic activation suggests that Nrf2 is the primary mediator of CDDO-Im activity, though other cell-signaling targets are also modulated following an oral dose of 30 μmol/kg. © The Author 2009. Published by Oxford University Press. All rights reserved

    High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro

    No full text
    Background Oral contraceptive (OC) use increases venous thromboembolism risk 2-5-fold. Procoagulant changes can be detected in plasma from OC users even without thrombosis, but cellular mechanisms that provoke thrombosis have not been identified. Endothelial cell (EC) dysfunction is thought to initiate venous thromboembolism. It is unknown whether OC hormones provoke aberrant procoagulant activity in ECs. Objective Characterize the effect of high-risk OC hormones (ethinyl estradiol [EE] and drospirenone) on EC procoagulant activity and the potential interplay with nuclear estrogen receptors ERα and ERβ and inflammatory processes. Methods Human umbilical vein and dermal microvascular ECs (HUVEC and HDMVEC, respectively) were treated with EE and/or drospirenone. Genes encoding the estrogen receptors ERα and ERβ (ESR1 and ESR2, respectively) were overexpressed in HUVEC and HDMVEC via lentiviral vectors. EC gene expression was assessed by RT-qPCR. The ability of ECs to support thrombin generation and fibrin formation was measured by calibrated automated thrombography and spectrophotometry, respectively. Results Neither EE nor drospirenone, alone or together, changed expression of genes encoding anti- or procoagulant proteins (TFPI, THBD, F3), integrins (ITGAV, ITGB3), or fibrinolytic mediators (SERPINE1, PLAT). EE and/or drospirenone did not increase EC-supported thrombin generation or fibrin formation, either. Our analyses indicated a subset of individuals express ESR1 and ESR2 transcripts in human aortic ECs. However, overexpression of ESR1 and/or ESR2 in HUVEC and HDMVEC did not facilitate the ability of OC-treated ECs to support procoagulant activity, even in the presence of a pro-inflammatory stimulus. Conclusions The OC hormones EE and drospirenone do not directly enhance thrombin generation potential of primary ECs in vitro

    High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro.

    No full text
    BackgroundOral contraceptive (OC) use increases venous thromboembolism risk 2-5-fold. Procoagulant changes can be detected in plasma from OC users even without thrombosis, but cellular mechanisms that provoke thrombosis have not been identified. Endothelial cell (EC) dysfunction is thought to initiate venous thromboembolism. It is unknown whether OC hormones provoke aberrant procoagulant activity in ECs.ObjectiveCharacterize the effect of high-risk OC hormones (ethinyl estradiol [EE] and drospirenone) on EC procoagulant activity and the potential interplay with nuclear estrogen receptors ERα and ERβ and inflammatory processes.MethodsHuman umbilical vein and dermal microvascular ECs (HUVEC and HDMVEC, respectively) were treated with EE and/or drospirenone. Genes encoding the estrogen receptors ERα and ERβ (ESR1 and ESR2, respectively) were overexpressed in HUVEC and HDMVEC via lentiviral vectors. EC gene expression was assessed by RT-qPCR. The ability of ECs to support thrombin generation and fibrin formation was measured by calibrated automated thrombography and spectrophotometry, respectively.ResultsNeither EE nor drospirenone, alone or together, changed expression of genes encoding anti- or procoagulant proteins (TFPI, THBD, F3), integrins (ITGAV, ITGB3), or fibrinolytic mediators (SERPINE1, PLAT). EE and/or drospirenone did not increase EC-supported thrombin generation or fibrin formation, either. Our analyses indicated a subset of individuals express ESR1 and ESR2 transcripts in human aortic ECs. However, overexpression of ESR1 and/or ESR2 in HUVEC and HDMVEC did not facilitate the ability of OC-treated ECs to support procoagulant activity, even in the presence of a pro-inflammatory stimulus.ConclusionsThe OC hormones EE and drospirenone do not directly enhance thrombin generation potential of primary ECs in vitro
    corecore