6,382 research outputs found

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    The Nucleon Spin Polarizability at Order O(p4{\cal O}(p^4) in Chiral Perturbation Theory

    Get PDF
    We calculate the forward spin-dependent photon-nucleon Compton amplitude as a function of photon energy at the next-to-leading (O(p4){\cal O}(p^4)) order in chiral perturbation theory, from which we extract the contribution to nucleon spin polarizability. The result shows a large correction to the leading order contribution.Comment: 7 pages, latex, 2 figures included as .eps file

    The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling

    Full text link
    The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst of the recurrent nova RS Oph was observed twice with Chandra and once with XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after outburst. We confirm a 35-sec period on day 54.0 and found that it originates from the SSS emission and not from the shock. We discus the bound-free absorption by neutral elements in the line of sight, resonance absorption lines plus self-absorbed emission line components, collisionally excited emission lines from the shock, He-like intersystem lines, and spectral changes during an episode of high-amplitude variability. We find a decrease of the oxygen K-shell absorption edge that can be explained by photoionization of oxygen. The absorption component has average velocities of -1286+-267 km/s on day 39.7 and of -771+-65 km/s on day 66.9. The wavelengths of the emission line components are consistent with their rest wavelengths as confirmed by measurements of non-self absorbed He-like intersystem lines. We have evidence that these lines originate from the shock rather than the outer layers of the outflow and may be photoexcited in addition to collisional excitations. We found collisionally excited emission lines that are fading at wavelengths shorter than 15A that originate from the radiatively cooling shock. On day 39.5 we find a systematic blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i ratios which indicates either high densities or significant UV radiation near the plasma where the emission lines are formed. During the phase of strong variability the spectral hardness light curve overlies the total light curve when shifted by 1000sec. This can be explained by photoionization of neutral oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author Woodward adde

    Rotationally induced vortices in optical cavity modes

    Full text link
    We show that vortices appear in the modes of an astigmatic optical cavity when it is put into rotation about its optical axis. We study the properties of these vortices and discuss numerical results for a specific realization of such a set-up. Our method is exact up to first order in the time-dependent paraxial approximation and involves bosonic ladder operators in the spirit of the quantum-mechanical harmonic oscillator.Comment: 8 pages, 5 figures. Accepted for publication in a special issue (singular optics 2008) of Journal of Optics A: Pure and Applied Optic

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    Instability of two interacting, quasi-monochromatic waves in shallow water

    Full text link
    We study the nonlinear interactions of waves with a doubled-peaked power spectrum in shallow water. The starting point is the prototypical equation for nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries equation. Using a multiple-scale technique two defocusing coupled Nonlinear Schr\"odinger equations are derived. We show analytically that plane wave solutions of such a system can be unstable to small perturbations. This surprising result suggests the existence of a new energy exchange mechanism which could influence the behaviour of ocean waves in shallow water.Comment: 4 pages, 2 figure

    Landau Damping and Coherent Structures in Narrow-Banded 1+1 Deep Water Gravity Waves

    Full text link
    We study the nonlinear energy transfer around the peak of the spectrum of surface gravity waves by taking into account nonhomogeneous effects. In the narrow-banded approximation the kinetic equation resulting from a nonhomogeneous wave field is a Vlasov-Poisson type equation which includes at the same time the random version of the Benjamin-Feir instability and the Landau damping phenomenon. We analytically derive the values of the Phillips' constant α\alpha and the enhancement factor γ\gamma for which the narrow-banded approximation of the JONSWAP spectrum is unstable. By performing numerical simulations of the nonlinear Schr\"{o}dinger equation we check the validity of the prediction of the related kinetic equation. We find that the effect of Landau damping is to suppress the formation of coherent structures. The problem of predicting freak waves is briefly discussed.Comment: 4 pages, 3 figure

    Violation of Bell inequality for thermal states of interaction qubits via a multi-qubit Heisenberg model

    Full text link
    We study the violations of Bell inequality for thermal states of qubits in a multi-qubit Heisenberg model as a function of temperature and external magnetic fields. Unlike the behaviors of the entanglement the violation can not be obtained by increasing the temperature or the magnetic field. The threshold temperatures of the violation are found be less than that of the entanglement. We also consider a realistic cavity-QED model which is a special case of the mutli-qubit Heisenberg model.Comment: 5 pages, 5 figures, few changed, accepted by New J. Phy

    The Fermi-Pasta-Ulam recurrence and related phenomena for 1D shallow-water waves in a finite basin

    Full text link
    In this work, different regimes of the Fermi-Pasta-Ulam (FPU) recurrence are simulated numerically for fully nonlinear "one-dimensional" potential water waves in a finite-depth flume between two vertical walls. In such systems, the FPU recurrence is closely related to the dynamics of coherent structures approximately corresponding to solitons of the integrable Boussinesq system. A simplest periodic solution of the Boussinesq model, describing a single soliton between the walls, is presented in an analytical form in terms of the elliptic Jacobi functions. In the numerical experiments, it is observed that depending on a number of solitons in the flume and their parameters, the FPU recurrence can occur in a simple or complicated manner, or be practically absent. For comparison, the nonlinear dynamics of potential water waves over nonuniform beds is simulated, with initial states taken in the form of several pairs of colliding solitons. With a mild-slope bed profile, a typical phenomenon in the course of evolution is appearance of relatively high (rogue) waves, while for random, relatively short-correlated bed profiles it is either appearance of tall waves, or formation of sharp crests at moderate-height waves.Comment: revtex4, 10 pages, 33 figure
    • 

    corecore