81 research outputs found

    Czochralski-growth of germanium crystals containing high concentrations of oxygen impurities

    Get PDF
    Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B(2)O(3)) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm(-1) in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B(2)O(3) liquid was about 10(16) cm(-3) and was almost the same as that in a Ge crystal grown without B(2)O(3). Oxygen concentration in a Ge crystal was enhanced to be greater than 10(17) cm(-3) by growing a crystal from a melt fully covered with B(2)O(3); with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5 x 10(17) cm(-3). The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.ArticleJOURNAL OF CRYSTAL GROWTH. 312(19):2783-2787 (2010)journal articl

    Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation

    Get PDF
    CDC42-C末端異常症に於ける炎症病態を解明 --ゴルジ体への異常蓄積がパイリンインフラマソーム形成を過剰促進--. 京都大学プレスリリース. 2022-05-02.Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1β–blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42[R186C], we found that patient-derived cells secreted larger amounts of IL-1β in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42[R186C] protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42[*192C*24] that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation

    Cardiomyocyte Formation by Skeletal Muscle-Derived Multi-Myogenic Stem Cells after Transplantation into Infarcted Myocardium

    Get PDF
    BACKGROUND: Cellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported. METHODS AND RESULTS: Skeletal muscle interstitium-derived CD34(+)/CD45(-) (Sk-34) cells were purified from green fluorescent protein transgenic mice by flowcytometory. Cardiac differentiation of Sk-34 cells was examined by in vitro clonal culture and co-culture with embryonic cardiomyocytes, and in vivo transplantation into a nude rat myocardial infarction (MI) model (left ventricle). Lower relative expression of cardiomyogenic transcription factors, such as GATA-4, Nkx2-5, Isl-1, Mef2 and Hand2, was seen in clonal cell culture. However, vigorous expression of these factors was seen on co-culture with embryonic cardiomyocytes, together with formation of gap-junctions and synchronous contraction following sphere-like colony formation. At 4 weeks after transplantation of freshly isolated Sk-34 cells, donor cells exhibited typical cardiomyocyte structure with formation of gap-junctions, as well as intercalated discs and desmosomes, between donor and recipient and/or donor and donor cells. Fluorescence in situ hybridization (FISH) analysis detecting the rat and mouse genomic DNA and immunoelectron microscopy using anti-GFP revealed donor-derived cells. Transplanted Sk-34 cells were incorporated into infarcted portions of recipient muscles and contributed to cardiac reconstitution. Significant improvement in left ventricular function, as evaluated by transthoracic echocardiography and micro-tip conductance catheter, was also observed. CONCLUSIONS AND SIGNIFICANCE: Skeletal muscle-derived multipotent Sk-34 cells that can give rise to skeletal and smooth muscle cells as reported previously, also give rise to cardiac muscle cells as multi-myogenic stem cells, and thus are a potential source for practical cellular cardiomyoplasty

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Plasma amino acid signature for sarcopenic phenotypes in community-dwelling octogenarians: Results from the Kawasaki Aging Wellbeing Project

    No full text
    Sarcopenia is one of the primary risk factors for various adverse health events in later life. However, its pathophysiology in the very old population remains unclear. Hence, this study aimed to examine whether plasma free amino acids (PFAAs) correlate with major sarcopenic phenotypes (i.e., muscle mass, muscle strength, and physical performance) in community-dwelling adults aged 85–89 years living in Japan. Cross-sectional data from the Kawasaki Aging Well-being Project were used. We included 133 adults aged 85–89 years. In this study, fasting blood was collected to measure 20 plasma PFAAs. Measures for the three major sarcopenic phenotypes included appendicular lean mass assessed by multifrequency bioimpedance, isometric handgrip strength, and gait speed from a 5 m walk at a usual pace. Furthermore, we used phenotype–specific elastic net regression models adjusted for age centered at 85 years, sex, body mass index, education level, smoking status, and drinking habit to identify significant PFAAs for each sarcopenic phenotype. Higher histidine and lower alanine levels were associated with poor gait speed, but no PFAAs correlated with muscle strength or mass. In conclusion, PFAAs such as plasma histidine and alanine are novel blood biomarkers associated with physical performance in community-dwelling adults aged 85 years or older

    Analysis of HRAS mutations in Japanese patients with oral squamous cell carcinoma

    No full text
    Objectives: The incidence of oral squamous cell carcinoma (OSCC) is associated with chewing tobacco and heavy consumption of alcohol. OSCC is also associated with Harvey rat sarcoma viral proto-oncogene homolog (HRAS) gene mutations, which are known to be high-risk factors for poor survival outcomes in patients with OSCC. In this study, we analysed HRAS mutations in Japanese patients with OSCC. Methods: Tumours and oral mucosal tissue samples were collected from 84 treatment-naïve patients with OSCC, between April 2010 and November 2012 in the Department of Oral and Maxillofacial Surgery at a university hospital in Japan. Results: An HRAS mutation was identified in one of the 84 tumours (1.2%) using standard Sanger sequencing. This mutation occurred in codon 13 (c.38G > T) of exon 2, and it corresponded to amino acid substitution p.Gly13Val. Statistical analysis demonstrated that HRAS mutations were associated with chewing tobacco (p < 0.05). Consistent with the fact that Japanese people generally do not chew tobacco, the frequency of HRAS mutations among Japanese patients with OSCC was low. Conclusion: Even though HRAS mutations are associated with OSCC, the HRAS gene may be a poor biomarker for investigating OSCC among the Japanese population due to the low frequency of the mutation. This phenomenon may be explained by a relatively low rate of chewing tobacco consumption in this population
    corecore