51 research outputs found

    Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model

    Full text link
    We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value (VEV) which generates neutrino masses. Thanks to this tiny VEV of the neutrinophilic Higgs, our model allows to reduce the mass of the lightest right-handed (s)neutrino to be O(105){\cal O}(10^5) GeV as keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high, hence this scenario is free from gravitino problem.Comment: 5 pages, 1 figur

    Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes

    Get PDF
    hMis14 and HP1 depend on each other to localize to the kinetochore and inner centromere, respectively

    Thermal leptogenesis in brane world cosmology

    Full text link
    The thermal leptogenesis in brane world cosmology is studied. In brane world cosmology, the expansion law is modified from the four-dimensional standard cosmological one at high temperature regime in the early universe. As a result, the well-known upper bound on the lightest light neutrino mass induced by the condition for the out-of-equilibrium decay of the lightest heavy neutrino, m~1103\tilde{m}_1 \lesssim 10^{-3} eV, can be moderated to be m~1103eV×(M1/Tt)2\tilde{m}_1 \lesssim 10^{-3} {eV} \times (M_1/T_t)^2 in the case of TtM1T_t \leq M_1 with the lightest heavy neutrino mass (M1M_1) and the ``transition temperature'' (TtT_t), at which the modified expansion law in brane world cosmology is smoothly connecting with the standard one. This implies that the degenerate mass spectrum of the light neutrinos can be consistent with the thermal leptogenesis scenario. Furthermore, as recently pointed out, the gravitino problem in supersymmetric case can be solved if the transition temperature is low enough Tt1067T_t \lesssim 10^{6-7} GeV. Therefore, even in the supersymmetric case, thermal leptogenesis scenario can be successfully realized in brane world cosmology.Comment: 9 pages, final versio

    Mis16 and Mis18 Are Required for CENP-A Loading and Histone Deacetylation at Centromeres

    Get PDF
    AbstractCentromeres contain specialized chromatin that includes the centromere-specific histone H3 variant, spCENP-A/Cnp1. Here we report identification of five fission yeast centromere proteins, Mis14–18. Mis14 is recruited to kinetochores independently of CENP-A, and, conversely, CENP-A does not require Mis14 to associate with centromeres. In contrast, Mis15, Mis16 (strong similarity with human RbAp48 and RbAp46), Mis17, and Mis18 are all part of the CENP-A recruitment pathway. Mis15 and Mis17 form an evolutionarily conserved complex that also includes Mis6. Mis16 and Mis18 form a complex and maintain the deacetylated state of histones specifically in the central core of centromeres. Mis16 and Mis18 are the most upstream factors in kinetochore assembly as they can associate with kinetochores in all kinetochore mutants except for mis18 and mis16, respectively. RNAi knockdown in human cells shows that Mis16 function is conserved as RbAp48 and RbAp46 are both required for localization of human CENP-A

    Mass Measurement of the Decaying Bino at the LHC

    Full text link
    In some class of supersymmetric (SUSY) models, the neutral Wino becomes the lightest superparticle and the Bino decays into the Wino and standard-model particles. In such models, we show that the measurement of the Bino mass is possible if the short charged tracks (with the length of O(10 cm)) can be identified as a signal of the charged-Wino production. We pay particular attention to the anomaly-mediated SUSY-breaking (AMSB) model with a generic form of K\"ahler potential, in which only the gauginos are kinematically accessible superparticles to the LHC, and discuss the implication of the Bino mass measurement for the test of the AMSB model.Comment: 13 pages, 3 figures, 1 tabl

    A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology

    Full text link
    We discuss some details for the model proposed in Ref. \cite{aks-prl}, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without introducing very high mass scales. An exact discrete Z2Z_2 symmetry is introduced, under which new particle contents (a real singlet scalar field, a pair of charged singlet scalar fields and TeV-scale right-handed neutrinos) are assigned to have odd quantum number, whereas ordinary gauge fields, quarks and leptons, and two Higgs doublets are even. Tiny neutrino masses are generated at the three loop level due to the exact Z2Z_2 symmetry, by which stability of the dark matter candidate is also guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. We discuss phenomenological properties of the model, and find that there are successful scenarios in which above three problems are solved simultaneously under the constraint from current experimental data. We then discuss predictions in such scenarios at ongoing and future experiments. It turns out that the model provides discriminative predictions especially in Higgs physics and dark matter physics, so that it is testable in near future.Comment: Version accepted for publication in Physical Review D, 43 pages, 23 figures. Revised Figs.13 and 14, minor errors and typos corrected, added footnote

    Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning

    Get PDF
    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales. Tiny neutrino masses are generated at the three loop level due to the exact Z2Z_2 symmetry, by which stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.Comment: 4 pages including 3 figures; version with revised figure

    Originally Asymmetric Dark Matter

    Full text link
    We propose a scenario with a fermion dark matter, where the dark matter particle used to be the Dirac fermion, but it takes the form of the Majorana fermion at a late time. The relic number density of the dark matter is determined by the dark matter asymmetry generated through the same mechanism as leptogenesis when the dark matter was the Dirac fermion. After efficient dark matter annihilation processes have frozen out, a phase transition of a scalar field takes place and generates Majorana mass terms to turn the dark matter particle into the Majorana fermion. In order to address this scenario in detail, we propose two simple models. The first one is based on the Standard Model (SM) gauge group and the dark matter originates the SU(2)LSU(2)_L doublet Dirac fermion, analogous to the Higgsino-like neutralino in supersymmetric models. We estimate the spin-independent/dependent elastic scattering cross sections of this late-time Majorana dark matter with a proton and find the possibility to discover it by the direct and/or indirect dark matter search experiments in the near future. The second model is based on the BLB-L gauged extension of the SM, where the dark matter is a SM singlet. Although this model is similar to the so-called Higgs portal dark matter scenario, the spin-independent elastic scattering cross section can be large enough to detect this dark matter in future experiments.Comment: 24 pages. Final journal versio

    Sterile neutrino dark matter in BLB-L extension of the standard model and galactic 511 keV line

    Get PDF
    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1)BLU(1)_{B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting candidate for dark matter. We emphasize that if the neutrino mass is of order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA

    Evaluation of oral immunotherapy efficacy and safety by maintenance dose dependency: A multicenter randomized study

    Get PDF
    Background Generally, oral immunotherapy (OIT) aims for daily administration. Recently, the efficacy of treatment with OIT at a low dose has been reported. However, the optimal dose and the evaluation of dose-dependent OIT outcome have not been described. Methods A multicenter, parallel, open-labeled, prospective, non-placebo controlled, randomized study enrolled 101 Japanese patients for treatment with OIT. We hypothesized that target dose OIT would induce short-term unresponsiveness (StU) earlier than reduced dose OIT. StU was defined as no response to 6200 mg whole egg, 3400 mg milk, and 2600 mg wheat protein, as evaluated by oral food challenge after 2-week ingestion cessation. To compare the two doses of OIT efficacy, the maximum ingestion doses during the maintenance phase of OIT were divided into 100%-dose or 25%-dose groups against their target StU dose, respectively. A total of 51 patients were assigned to the 100%-dose group [hen's egg (HE) = 26, cow's milk (CM) = 13, wheat = 12] and 50 to the 25%-dose group (HE = 25, CM = 13, wheat = 12). Primary outcome was established by comparing StU at 1 year. Secondary outcome was StU at 2 years and established by comparing allergic symptoms and immunological changes. Results The year 1 StU rates (%) for the 100%- and 25%-dose groups were 26.9 vs. 20.0 (HE), 7.7 vs. 15.4 (CM), and 50.0 vs. 16.7 (wheat), respectively. The year 2 StU rates were 30.8 vs. 36.0 (HE), 7.7 vs. 23.1 (CM), and 58.3 vs. 58.3 (wheat), respectively. There were no statistically significant differences in StU between years 1 and 2. The total allergic symptom rate in the 25%-dose group was lower than that in the 100%-dose group for egg, milk, and wheat. Antigen-specific IgE levels for egg-white, milk, and wheat decreased at 12 months. Conclusions Reduced maintenance dose of egg OIT showed similar therapeutic efficacy to the target dose. However, we were not able to clearly demonstrate the efficacy, particularly for milk and wheat. Reducing the maintenance dose for eggs, milk, and wheat may effectively lower the symptoms associated with their consumption compared to the target OIT dose. Furthermore, aggressive reduction of the maintenance dose might be important for milk and wheat, compared to the 25%-dose OIT
    corecore