274 research outputs found

    How Arsenic, an Inorganic Pollutant, is Involved in the Physiology of Biomolecular Condensates in the Cell

    Get PDF
    The existence of membrane-less organelles in the cells has been known for a relatively long time. Of the membrane-less organelles, stress granules, processing bodies, and PML-NBs have been intensively investigated in relation to arsenic. The membrane-less organelles, which concentrate biomolecules (proteins, nucleic acids), have recently been shown to self-organize by means of phase separation/transition. These biomolecular condensates (membrane-less organelles) can provide local enhancement of the efficiency of specific reactions. The biomolecular condensates have attracted dramatic attention over the last decade because highly organized biochemical complexes in the cell have long been understood by the membrane-dependent compartmentalization. In this mini review, we highlight the initiation of phase separation for each biomolecular condensate in which arsenic could be involved. We further reflect on the adequacy of the arsenic-dependent ROS levels for the formation of biomolecular condensates. These perspectives led us to re-evaluate the biological action of arsenic from a biophysical and bio-rheological point of view

    Optical dispersions through intracellular inhomogeneities

    Full text link
    Transport of intensity equation (TIE) exhibits a non-interferometric correlation between intensity and phase variations of intermediate fields (e.g., light and electron) in biological imaging. Previous TIE formulations have generally assumed a free space propagation of monochromatic coherent field functions crossing phase distributions along a longitudinal direction. Here, we modify the TIE with fractal (or self-similar) organization models based on intracellular refractive index turbulence. We then implement the TIE simulation over a broad range of fractal dimensions and wavelengths. Simulation results show how the intensity propagation through the spatial fluctuation of intracellular refractive index interconnects fractal-dimensionality with intensity dispersion (or transmissivity) within the picometer to micrometer wavelength range. In addition, we provide a spatial-autocorrelation of phase derivatives which allows the direct measurement and reconstruction of intracellular fractal profiles from optical and electron microscopy imaging.Comment: 22 pages, 18 figures, 4 table

    Irinotecan Hydrochloride (CPT-11) in Dialysis Patients with Gastrointestinal Cancer

    Get PDF
    We investigated changes in drug disposition and toxicities with CPT-11 in 15 dialysis patients with gastrointestinal cancers to clarify whether CPT-11 could be administered safely in such patients. For comparison, the same parameters were also investigated in 10 cancer patients not undergoing dialysis. Items investigated included (1) plasma concentrations of SN-38, SN-38G and CPT-11 at 0, 1, 12, 24, 36, 48 and 72h after administration, together with a comparison of mean AUC values for 3 dose levels of CPT-11 (50, 60 and 70mg/m2) in dialysis patients and controls;and (2) occurrence of adverse events. Several findings emerged from this study:(1) No significant difference was observed in the AUC for SN-38 or CPT-11 between the dialysis and control groups;(2) The AUC for SN-38G at each dose was significantly higher in dialysis patients;and (3) Grade 1-4 leucopenia was observed in 11 of the dialysis patients. One patient developed grade 4 leucopenia and died due to sepsis. Anorexia, diarrhea, nausea, alopecia and interstitial pneumonia occurred in 6 dialysis patients. We found changes in drug dispositions of CPT-11, SN-38 and SN-38G in dialysis patients, suggesting that hepatic excretion, especially that of SN-38G, was increased. No significant difference in occurrence of adverse events was observed between the 2 groups. This indicates that CPT-11 can be administered safely in patients on dialysis.</p

    Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes : Insight into a Role of the Coiled-Coil Region

    Get PDF
    The coiled-coil motif mediates subunit oligomerization and scaffolding and underlies several fundamental biologic processes. Prohibitins (PHBs), mitochondrial inner membrane proteins involved in mitochondrial homeostasis and signal transduction, are predicted to have a coiled-coil motif, but their structural features are poorly understood. Here we solved the crystal structure of the heptad repeat (HR) region of PHB2 at 1.7-Ã… resolution, showing that it assembles into a dimeric, antiparallel coiled-coil with a unique negatively charged area essential for the PHB interactome in mitochondria. Disruption of the HR coiled-coil abolishes well-ordered PHB complexes and the mitochondrial tubular networks accompanying PHB-dependent signaling. Using a proximity-dependent biotin identification (BioID) technique in live cells, we mapped a number of mitochondrial intermembrane space proteins whose association with PHB2 relies on the HR coiled-coil region. Elucidation of the PHB complex structure in mitochondria provides insight into essential PHB interactomes required for mitochondrial dynamics as well as signal transduction

    Kheper, a Novel ZFH/δEF1 Family Member, Regulates the Development of the Neuroectoderm of Zebrafish (Danio rerio)

    Get PDF
    AbstractKheper is a novel member of the ZFH (zinc-finger and homeodomain protein)/δEF1 family in zebrafish. kheper transcripts are first detected in the epiblast of the dorsal blastoderm margin at the early gastrula stage and kheper is expressed in nearly all the neuroectoderm at later stages. kheper expression was expanded in noggin RNA-injected embryos and also in swirl mutant embryos and was reduced in bmp4 RNA-injected embryos and chordino mutant embryos, suggesting that kheper acts downstream of the neural inducers Noggin and Chordino. Overexpression of Kheper elicited ectopic expansion of the neuroectoderm-specific genes fkd3, hoxa-1, and eng3, and the ectopic expression of hoxa-1 was not inhibited by BMP4 overexpression. Kheper interacted with the transcriptional corepressors CtBP1 and CtBP2. Overexpression of a Kheper mutant lacking the homeodomain or of a VP16–Kheper fusion protein disturbed the development of the neuroectoderm and head structures. These data underscore the role of Kheper in the development of the neuroectoderm and indicate that Kheper acts as a transcriptional repressor

    Malignancy incidences by glycemic control among diabetic patients

    Get PDF
    Background: The aim of this study was to evaluate the difference in malignancy incidence by evaluating time-dependent HbA1c levels among diabetic patients in a longitudinal study. Methods: We conducted a retrospective longitudinal study at large academic hospital, Tokyo, Japan, from 2006 to 2016. We included all diabetic patients who were 50 years or older and who underwent health check-ups at the Center for Preventive Medicine. Those patients with a prior history of malignancies were excluded. We categorized patients into five groups on the basis of HbA1c measurements: 8.5%. Our primary outcome was the development of any types of malignancy. Longitudinal analyses by a mixed effect model with time-dependent HbA1c levels were applied in order to take into account fluctuations in HbA1c levels within the same patient. Results: In total, 2729 participants were included in this study, where the mean age was 62.6 (standard deviation (s.d.): 7.8) and 2031 (74.4%) were male. The mean disease duration of diabetes was 7.6 (s.d.: 7.6) years, and 1688 (61.8%) were prescribed medications. Median follow-up was 1443.5 (interquartile range (IQR): 2508) days and 376 (13.8%) developed malignancies. Compared to the reference range of HbA1c (5.5–6.4%), the odds ratios for developing malignancies among the other HbA1c level groups were similar and not statistically different (OR: 0.98, 95% CI:0.31–3.15 (for HbA1c 8.5%)). Conclusion: In our study, there was no association between glycemic control and the development of future malignancies. Compared to very strictly controlled HbA1c levels, both excessive control and good or bad control had a statistically similar risk of developing malignancies

    Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resveratrol is a natural polyphenolic compound known for its beneficial effects on energy homeostasis, and it also has multiple properties, including anti-oxidant, anti-inflammatory, and anti-tumor activities. Recently, silent information regulator genes (Sirtuins) have been identified as targets of resveratrol. Sirtuin 1 (SIRT1), originally found as an NAD<sup>+</sup>-dependent histone deacetylase, is a principal modulator of pathways downstream of calorie restriction, and the activation of SIRT1 ameliorates glucose homeostasis and insulin sensitivity. To date, the presence and physiological role of SIRT1 in the ovary are not known. Here we found that SIRT1 was localized in granulosa cells of the human ovary.</p> <p>Methods</p> <p>The physiological roles of resveratrol and SIRT1 in the ovary were analyzed. Immunohistochemistry was performed to localize the SIRT1 expression. SIRT1 protein expression of cultured cells and luteinized human granulosa cells was investigated by Western blot. Rat granulosa cells were obtained from diethylstilbestrol treated rats. The cells were treated with increasing doses of resveratrol, and subsequently harvested to determine mRNA levels and protein levels. Cell viability was tested by MTS assay. Cellular apoptosis was analyzed by caspase 3/7 activity test and Hoechst 33342 staining.</p> <p>Results</p> <p>SIRT1 protein was expressed in the human ovarian tissues and human luteinized granulosa cells. We demonstrated that resveratrol exhibited a potent concentration-dependent inhibition of rat granulosa cells viability. However, resveratrol-induced inhibition of rat granulosa cells viability is independent of apoptosis signal. Resveratrol increased mRNA levels of SIRT1, LH receptor, StAR, and P450 aromatase, while mRNA levels of FSH receptor remained unchanged. Western blot analysis was consistent with the results of quantitative real-time RT-PCR assay. In addition, progesterone secretion was induced by the treatment of resveratrol.</p> <p>Conclusions</p> <p>These results suggest a novel mechanism that resveratrol could enhance progesterone secretion and expression of luteinization-related genes in the ovary, and thus provide important implications to understand the mechanism of luteal phase deficiency.</p

    Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems

    Get PDF
    The RNA-guided endonuclease Cas9 generates a double-strand break at DNA target sites complementary to the guide RNA and has been harnessed for the development of a variety of new technologies, such as genome editing. Here, we report the crystal structures of Campylobacter jejuni Cas9 (CjCas9), one of the smallest Cas9 orthologs, in complex with an sgRNA and its target DNA. The structures provided insights into a minimal Cas9 scaffold and revealed the remarkable mechanistic diversity of the CRISPR-Cas9 systems. The CjCas9 guide RNA contains a triple-helix structure, which is distinct from known RNA triple helices, thereby expanding the natural repertoire of RNA triple helices. Furthermore, unlike the other Cas9 orthologs, CjCas9 contacts the nucleotide sequences in both the target and non-target DNA strands and recognizes the 5′-NNNVRYM-3′ as the protospacer-adjacent motif. Collectively, these findings improve our mechanistic understanding of the CRISPR-Cas9 systems and may facilitate Cas9 engineering. Keywords: CRISPR-Cas system; Cas9; protospacer adjacent motif; RNA triplex; crystal structureUnited States. Department of Energy (Grant DE-FG02-97ER25308)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049
    • …
    corecore