36 research outputs found

    Neurogenesis in the dentate gyrus of the rat hippocampus enhanced by tickling stimulation with positive emotion

    Get PDF
    Hippocampal neurogenesis is influenced by many factors. In this study, we examined the effect of tactile stimulation (tickling), which induced positive emotion, on neurogenesis in the dentate gyrus (DG) of the hippocampus. Four week-old rats were tickled for 5 min/day on 5 consecutive days and received 5-bromo-2′-deoxyuridine (BrdU) administration for 4 days from the second tickling day. Then they were allowed to survive for 18 h or 3 weeks after the end of BrdU treatment. Neurogenesis in the DG was compared between the tickled and untickled rats by using immunohistochemistry with anti-BrdU antibody. The result showed that the number of BrdU- and NeuN (neural cell marker)-double positive neurons on 18 h as well as 3 weeks of the survival periods was significantly increased in the tickled group as compared with the untickled group. The expression of mRNA of brain-derived neurotrophic factor (BDNF) in the hippocampus of the tickled rats was not altered when compared with the control rats. In conclusion, tickling stimulation which induces positive emotion may affect the generation and survival of new neurons of the DG through the BDNF-independent pathway

    Weather and Health Symptoms

    No full text
    Weather affects the daily lives of individuals. However, its health effects have not been fully elucidated. It may lead to physical symptoms and/or influence mental health. Thus, we evaluated the association between weather parameters and various ailments. We used daily reports on health symptoms from 4548 individuals followed for one month in October of 2013, randomly sampled from the entirety of Japan. Weather variables from the monitoring station located closest to the participants were used as weather exposure. Logistic mixed effects model with a random intercept for each individual was applied to evaluate the effect of temperature and humidity on physical symptoms. Stratified analyses were conducted to compare weather effects by sex and age group. The lag day effects were also assessed. Joint pain was associated with higher temperature (1.87%, 95% CI = 1.15 to 2.59) and humidity (1.38%, 95% CI = 0.78 to 2.00). Headaches was increased by 0.56% (95% CI = −0.55 to 1.77) per 1 °C increase in the maximum temperature and by 1.35% per 1 °C increase in dew point. Weather was associated with various physical symptoms. Women seem to be more sensitive to weather conditions in association with physical symptoms, especially higher humidity and lower temperature

    Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan

    No full text
    Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus “Zetapartitivirus” and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family “Mycoaspirividae”, respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp

    RANTES Production from Mononuclear Cells in Response to the Specific Allergen in Asthma Patients

    No full text
    Background: Eosinophils are considered to be the major inflammatory cells in asthma. Since regulated on activation, normal T expressed and secreted (RANTES) is a potent chemoattractant for various important inflammatory cells such as eosinophils as well as memory T cells potentially recruiting these cells to an inflamed focus, RANTES has been considered to play a key role in various allergic disorders such as asthma. Methods: To extend our understanding of the participation of eosinophils and T cells in relation to the production of RANTES in response to the specific allergen in asthma, we examined the production of RANTES from peripheral blood mononuclear cells cultured with specific allergen in atopic asthma patients by a sandwich enzyme-linked immunosorbent assay. Results: It was revealed that mononuclear cells produced RANTES but not eotaxin in response to the specific allergen in asthma. RANTES production from mononuclear cells of asthma patients with eosinophilia was greater than that of asthma patients without eosinophilia. Moreover, in this study, no differences in RANTES production between CD4 negative cells and CD8 negative cells were observed. Conclusions: Taken together, these findings may suggest that mononuclear cells play a crucial role in the pathogenesis, particular in eosinophil and T lymphocyte recruitment into the inflamed focus of asthma through RANTES production in response to the specific allergen

    Simulation of gradient-coil-induced eddy currents and their effects on a head-only HTS MRI magnet

    No full text
    In this paper, we simulate the effects of eddy currents induced by switched gradient coils in the cylindrical cryostat structures of a high-temperature superconducting (HTS) magnetic resonance imaging magnet. A novel network method was used with spectral decomposition of the current density in the phiphi - and zz-directions to simulate the effects of X-gradient coils. Two types of active magnetic shielding were simulated, and it was found that one type is able to reduce the power of the eddy currents in the cryostat to a greater extent than the other. These results will inform the design of gradient coils that protect the HTS magnet from eddy-current-induced heating and vibrations
    corecore