2 research outputs found

    Forecasting wind power based on an improved al-Biruni Earth radius metaheuristic optimization algorithm

    Get PDF
    Wind power forecasting is pivotal in optimizing renewable energy generation and grid stability. This paper presents a groundbreaking optimization algorithm to enhance wind power forecasting through an improved al-Biruni Earth radius (BER) metaheuristic optimization algorithm. The BER algorithm, based on stochastic fractal search (SFS) principles, has been refined and optimized to achieve superior accuracy in wind power prediction. The proposed algorithm is denoted by BERSFS and is used in an ensemble model’s feature selection and optimization to boost prediction accuracy. In the experiments, the first scenario covers the proposed binary BERSFS algorithm’s feature selection capabilities for the dataset under test, while the second scenario demonstrates the algorithm’s regression capabilities. The BERSFS algorithm is investigated and compared to state-of-the-art algorithms of BER, SFS, particle swarm optimization, gray wolf optimizer, and whale optimization algorithm. The proposed optimizing ensemble BERSFS-based model is also compared to the basic models of long short-term memory, bidirectional long short-term memory, gated recurrent unit, and the k-nearest neighbor ensemble model. The statistical investigation utilized Wilcoxon’s rank-sum and analysis of variance tests to investigate the robustness of the created BERSFS-based model. The achieved results and analysis confirm the effectiveness and superiority of the proposed approach in wind power forecasting

    Efficient fractional-order modified Harris hawks optimizer for proton exchange membrane fuel cell modeling

    No full text
    An effective harmony between the exploration and exploitation phases in meta-heuristics is an essential design consideration to provide reliable performance on a wide range of optimization problems. This paper proposes a novel approach to enhance the exploratory behavior of the Harris hawks optimizer (HHO) based on the fractional calculus (FOC) memory concept. In the proposed variant of the HHO, a hawk moves with a fractional-order velocity, and the rabbit escaping energy is adaptively tuned based on FOC parameters to avoid premature convergence. As a result, the fractional-order modified Harris hawks optimizer (FMHHO) is proposed. The sensitivity of the algorithm performance vis-a-vis the FOC parameters is addressed, and the best variant is recommended based on twenty-three benchmarks. For validating the quality of the proposed variant, twenty-eight benchmarks of CEC2017 are tested. For evaluating the proposed variant against the other present-day techniques, several statistical measures and non-parametric tests are performed. Moreover, to demonstrate the applicability of the proposed technique, the proton exchange membrane fuel cell (PEMFC) model parameters estimation process is handled based on several measured datasets. In this series of experiments, the FMHHO variant is compared with the standard HHO and the other techniques based on intensive statistical metrics, mean convergence curves, and dataset fitting. The overall outcome shows that the FOC memory property improves the performance of the classical HHO and leads to accurate and robust solutions fitting the measured data.info:eu-repo/semantics/publishedVersio
    corecore