6 research outputs found

    Recombinant vacuolar iron transporter family homologue PfVIT from human malaria-causing Plasmodium falciparum is a Fe2+/H+ exchanger

    Get PDF
    This work was funded in part by a Royal Society Wolfson Research Merit Award (to J.P.D). It was also supported by the Wellcome Trust (grant number WT079272AIA) which funded the MALDI TOF-TOF analyser at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews. P.L was supported by a Northern Ireland Department of Employment and Learning (DEL) postgraduate studentship.Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens.Publisher PDFPeer reviewe

    Synthesis and biological evaluation of benzyl styrylsulfonyl derivatives as potent anticancer mitotic inhibitors

    Get PDF
    We herein report the synthesis, biological activity and structure activity relationship of derivatives of benzylstyrylsulfone, benzylstyrylsulfine and benzylsulfonyl-N-phenylacetamide. A lead compound 7 represents a new class of mitotic inhibitors that demonstrates potent anti-proliferative activity and selectively induces cancer cell apoptosis while sparing non-transformed lung fibroblast

    Discovery of (E)-3-((Styrylsulfonyl) methyl) pyridine and (E)-2-((Styrylsulfonyl) methyl) pyridine Derivatives as Anticancer Agents: Synthesis, Structure–Activity Relationships, and Biological Activities

    No full text
    ON01910.Na is a highly effective anticancer agent that induces mitotic arrest and apoptosis. Clinical studies with ON01910 in cancer patients have shown efficacy along with an impressive safety profile. While ON01910 is highly active against cancer cells, it has a low oral availability and requires continuous intravenous infusion or multiple gram doses to ensure sufficient drug exposure for biological activity in patients. We have identified two novel series of styrylsulfonyl-methylpyridines. Lead compounds 8, 9a, 18 and 19a are highly potent mitotic inhibitors and selectively cytotoxic to cancer cells. Impressively, these compounds possess excellent pharmaceutical properties and two lead drug candidates 9a and 18 demonstrated antitumor activities in animal models.Tiangong Lu, Aik Wye Goh, Mingfeng Yu, Julian Adams, Frankie Lam, Theodosia Teo, Peng Li, Ben Noll, Longjin Zhong, Sarah Diab, Osama Chahrour, Anran Hu, Abdullahi Y. Abbas, Xiangrui Liu, Shiliang Huang, Christopher J. Sumby, Robert Milne, Carol Midgley, and Shudong Wan
    corecore