2,441 research outputs found
Electronic Structure of Three-Dimensional Superlattices Subject to Tilted Magnetic Fields
Full quantum-mechanical description of electrons moving in 3D structures with
unidirectional periodic modulation subject to tilted magnetic fields requires
an extensive numerical calculation. To understand magneto-oscillations in such
systems it is in many cases sufficient to use the quasi-classical approach, in
which the zero-magnetic-field Fermi surface is considered as a
magnetic-field-independent rigid body in k-space and periods of oscillations
are related to extremal cross-sections of the Fermi surface cut by planes
perpendicular to the magnetic-field direction. We point out cases where the
quasi-classical treatment fails and propose a simple tight-binding
fully-quantum-mechanical model of the superlattice electronic structure.Comment: 8 pages, 7 figures, RevTex, submitted to Phys. Rev.
Analysis of Bose-Einstein correlations in e+e- -> W+W- events including final state interactions
Recently DELPHI Collaboration reported new data on Bose-Einstein correlations
(BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been
observed. We have analyzed these data including final state interactions (FSI)
of both Coulomb and strong (s-wave) origin and found that there is enhancement
in BEC but it is overshadowed by the FSI which are extremely important for
those events. We have found the following values for the size of the
interaction range beta and the degree of coherence lambda: beta=0.87 +/- 0.31fm
and lambda=1.19 +/- 0.48, respectively.Comment: 7pages, 4 figure
The search for dietary supplements to elevate or activate circulating paraoxonases
Low levels of paraoxonase 1 (PON1) have been associated with the development of several pathological conditions, whereas high levels have been shown to be anti-atherosclerotic in mouse models. These findings suggest that PON1 could be a good surrogate biomarker. The other members of the family, namely PON2 and PON3, the role of which has been much less studied, deserve more attention. This paper provides a systematic review of current evidence concerning dietary supplements in that regard. Preliminary studies indicate that the response to dietary supplements may have a nutrigenetic aspect that will need to be considered in large population studies or in clinical trials. A wide range of plant preparations have been found to have a positive action, with pomegranate and some of its components being the best characterized and Aronia melanocarpa one of the most active. Flavonoids are found in the composition of all active extracts, with catechins and genistein being the most promising agents for increasing PON1 activity. However, some caveats regarding the dose, length of treatment, bioavailability, and stability of these compounds in formulations still need to be addressed. Once these issues have been resolved, these compounds could be included as nutraceuticals and functional foods capable of increasing PON1 activity, thereby helping with the long-term prevention of atherosclerosis and other chronic ailments
PON1 and mediterranean diet
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity
Magic angle effects of the one-dimensional axis conductivity in quasi-one dimensional conductors
In quasi-one-dimensional conductors, the conductivity in both one-dimensional
axis and interchain direction shows peaks when magnetic field is tilted at the
magic angles in the plane perpendicular to the conducting chain. Although there
are several theoretical studies to explain the magic angle effect, no
satisfactory explanation, especially for the one-dimensional conductivity, has
been obtained. We present a new theory of the magic angle effect in the
one-dimensional conductivity by taking account of the momentum-dependence of
the Fermi velocity, which should be large in the systems close to a spin
density wave instability. The magic angle effect is explained in the
semiclassical equations of motion, but neither the large corrugation of the
Fermi surface due to long-range hoppings nor hot spots, where the relaxation
time is small, on the Fermi surface are required.Comment: 4 pages, 3 figure
Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies
Many of the most interesting and technologically important electronic
materials discovered in the past two decades have two common features: a
layered crystal structure and strong interactions between electrons. Two of the
most fundamental questions about such layered metals concern the origin of
intralayer anisotropies and the coherence of interlayer charge transport. We
show that angle dependent magnetoresistance oscillations (AMRO) are sensitive
to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe
of intralayer anisotropies that is complementary to angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).
However, AMRO are not very sensitive to the coherence of the interlayer
transport. We illustrate this with comparisons to recent AMRO experiments on an
overdoped cuprate.Comment: 7 pages, 3 figure
Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound
Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major part of the coeliac, mesenteric, and renal arteries. This review presents the methodological concept that underlies BFAb, and aspects of its day-to-day relative reliability in terms of the hemodynamics of the three target arteries, relationship with body surface area, respiratory effects, and potential clinical usefulness and application, in relation to data previously reported in original dedicated research
Gold(I) complexes bearing alkylated 1, 3, 5-triaza-7-phosphaadamantane ligands as thermoresponsive anticancer agents in human colon cells
Overheating can affect solubility or lipophilicity, among other properties, of some an-ticancer drugs. These temperature-dependent changes can improve efficiency and selectivity of the drugs, since they may affect their bioavailability, diffusion through cell membrane or activity. One recent approach to create thermosensitive molecules is the incorporation of fluorine atoms in the chemical structure, since fluor can tune some chemical properties such as binding affinity. Herein we report the anticancer effect of gold derivatives with phosphanes derived from 1, 3, 5-triaza-7-phosphaadamantane (PTA) with long hydrocarbon chains and the homologous fluorinated chains. Besides, we analysed the influence of temperature in the cytotoxic effect. The studied gold(I) complexes with phosphanes derived from PTA showed antiproliferative effect on human colon carcinoma cells (Caco-2/TC7 cell line), probably by inhibiting cellular TrxR causing a dysfunction in the intracellular redox state. In addition, the cell cycle was altered by the activation of p53, and the complexes produce apoptosis through mitochondrial depolarization and the consequent activation of caspase-3. Furthermore, the results suggest that this cytotoxic effect is enhanced by hyperthermia and the presence of polyfluorinated chains. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Determination of the Fermi Velocity by Angle-dependent Periodic Orbit Resonance Measurements in the Organic Conductor alpha-(BEDT-TTF)2KHg(SCN)4
We report detailed angle-dependent studies of the microwave (f=50 to 90 GHz)
interlayer magneto-electrodynamics of a single crystal sample of the organic
charge-density-wave (CDW) conductor alpha-(BEDT-TTF)2KHg(SCN)4. Recently
developed instrumentation enables both magnetic field (B) sweeps for a fixed
sample orientation and, for the first time, angle sweeps at fixed f/B. We
observe series' of resonant absorptions which we attribute to periodic orbit
resonances (POR) - a phenomenon closely related to cyclotron resonance. The
angle dependence of the POR indicate that they are associated with the low
temperature quasi-one-dimensional (Q1D) Fermi surface (FS) of the title
compound; indeed, all of the resonance peaks collapse beautifully onto a single
set of f/B versus angle curves, generated using a semiclassical
magneto-transport theory for a single Q1D FS. We show that Q1D POR measurements
provide one of the most direct methods for determining the Fermi velocity,
without any detailed assumptions concerning the bandstructure; our analysis
yields an average value of v_F=6.5x10^4 m/s. Quantitative analysis of the POR
harmonic content indicates that the Q1D FS is strongly corrugated. This is
consistent with the assumption that the low-temperature FS derives from a
reconstruction of the high temperature quasi-two-dimensional FS, caused by the
CDW instability. Detailed analysis of the angle dependence of the POR yields
parameters associated with the CDW superstructure which are consistent with
published results. Finally, we address the issue as to whether or not the
interlayer electrodynamics are coherent in the title compound.Comment: 28 pages, including 6 figures. Submitted to PR
Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4
We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that
provide strong support for a new macroscopic quantum phenomenon, the
interference commensurate (IC) effect, in quasi-one dimensional metals. In
addition to observing rich magnetoresistance oscillations, and fitting them
with one-electron calculations, we observe a clear demarcation of
field-dependent behavior at local resistance minima and maxima (versus field
angle). Anticipated by a theoretical treatment of the IC effect in terms of
Bragg reflections in the extended Brillouin zone, this behavior results from
1D-2D topological crossovers of electron wave functions as a function of field
orientation.Comment: 14 page
- âŠ