12 research outputs found

    Direct use of spent mushroom substrate from Pleurotus pulmonarius as a readily delignified feedstock for cellulase production

    Get PDF
    The feasibility of spent mushroom substrate (SMS) as an alternative fermentation feedstock for cellulase production has been demonstrated in this work. Utilization of SMS as a substrate has been attempted widely due to its high cellulose content and readily available in smaller particle size. On top of that, the availability of delignified SMS by the action of Pleurotus pulmonarius during mushroom cultivation offers another benefit to its use whereby no chemical pretreatment would be required prior to fermentation. The recovery of crude laccase and manganese peroxidase from delignified SMS were found to be 3 and 1.4 U/g, respectively. Further to this, the cellulase production from SMS by Trichoderma asperellum UPM 1 under solid state fermentation was optimized by applying central composite design, resulted in increment of 1.4-fold in CMCase (171.21 U/g) and 1.5-fold in β-glucosidase (6.83 U/g), with the optimum temperature of 27.5 °C, initial moisture content 81% and initial pH of fermentation 4.5. Therefore, this study showed that the direct utilization of SMS is feasible for promising cellulase production by T. asperellum UPM 1

    Production of a transfructosylating enzymatic activity associated to fructooligosaccharides

    No full text
    Biotransformation of sucrose to fructooligosaccharides (FOS) was investigated using the catalytic action of fructosyltransferase (FFase) originated from solid-state fermentation of agro-industrial wastes (sugarcane bagasse, sotol bagasse, Agave fibers, and polyurethane) using four fungal strains (Aspergillus niger GH1, A. niger PSH, Penicillium citrinum, and Penicillium purpurogenum) which have demonstrated ability to produce great diversity of metabolites of industrial interest. Microorganisms and supports were selected based on transfructosylating activity and FOS production. Agave fibers were the best support material since permitted the highest amounts of FOS and FFase, with a FOS productivity of 10.88 g/L * h and yield of 2.70 g/g based on total substrate. Moreover, the At/Ah ratio of FFase was higher for cells cultivated on Agave fibers than those values obtained for the other wastes. Such results showed that Agave fibers can be successfully used as support of A. niger PSH strain for FOS and FTase production.Authors thank Council of Science and Technology (CONACyT-Mexico) for the financial support given in the frame of the collaborative program among participating institutions.info:eu-repo/semantics/publishedVersio
    corecore