46 research outputs found

    Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3 - Implications for the evolution of staphylococcal pathogenicity islands

    Get PDF
    We describe the complete sequence of the 15.9-kb staphylococcal pathogenicity island 3 encoding staphylococcal enterotoxin serotypes B, K, and Q. The island, which meets the generally accepted definition of pathogenicity islands, contains 24 open reading frames potentially encoding proteins of more than 50 amino acids, including an apparently functional integrase. The element is bordered by two 17-bp direct repeats identical to those found flanking staphylococcal pathogenicity island 1. The island has extensive regions of homology to previously described pathogenicity islands, particularly staphylococcal pathogenicity islands 1 and bov. The expression of 22 of the 24 open reading frames contained on staphylococcal pathogenicity island 3 was detected either in vitro during growth in a laboratory medium or serum or in vivo in a rabbit model of toxic shock syndrome using DNA microarrays. The effect of oxygen tension on staphylococcal pathogenicity island 3 gene expression was also examined. By comparison with the known staphylococcal pathogenicity islands in the context of gene expression described here, we propose a model of pathogenicity island origin and evolution involving specialized transduction events and addition, deletion, or recombination of pathogenicity island "modules.

    Coordinated surface activities in Variovorax paradoxus EPS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Variovorax paradoxus </it>is an aerobic soil bacterium frequently associated with important biodegradative processes in nature. Our group has cultivated a mucoid strain of <it>Variovorax paradoxus </it>for study as a model of bacterial development and response to environmental conditions. Colonies of this organism vary widely in appearance depending on agar plate type.</p> <p>Results</p> <p>Surface motility was observed on minimal defined agar plates with 0.5% agarose, similar in nature to swarming motility identified in <it>Pseudomonas aeruginosa </it>PAO1. We examined this motility under several culture conditions, including inhibition of flagellar motility using Congo Red. We demonstrated that the presence of a wetting agent, mineral, and nutrient content of the media altered the swarming phenotype. We also demonstrated that the wetting agent reduces the surface tension of the agar. We were able to directly observe the presence of the wetting agent in the presence and absence of Congo Red, and found that incubation in a humidified chamber inhibited the production of wetting agent, and also slowed the progression of the swarming colony. We observed that swarming was related to both carbon and nitrogen sources, as well as mineral salts base. The phosphate concentration of the mineral base was critical for growth and swarming on glucose, but not succinate. Swarming on other carbon sources was generally only observed using M9 salts mineral base. Rapid swarming was observed on malic acid, d-sorbitol, casamino acids, and succinate. Swarming at a lower but still detectable rate was observed on glucose and sucrose, with weak swarming on maltose. Nitrogen source tests using succinate as carbon source demonstrated two distinct forms of swarming, with very different macroscopic swarm characteristics. Rapid swarming was observed when ammonium ion was provided as nitrogen source, as well as when histidine, tryptophan, or glycine was provided. Slower swarming was observed with methionine, arginine, or tyrosine. Large effects of mineral content on swarming were seen with tyrosine and methionine as nitrogen sources. Biofilms form readily under various culture circumstances, and show wide variance in structure under different conditions. The amount of biofilm as measured by crystal violet retention was dependent on carbon source, but not nitrogen source. Filamentous growth in the biofilm depends on shear stress, and is enhanced by continuous input of nutrients in chemostat culture.</p> <p>Conclusion</p> <p>Our studies have established that the beta-proteobacterium <it>Variovorax paradoxus </it>displays a number of distinct physiologies when grown on surfaces, indicative of a complex response to several growth parameters. We have identified a number of factors that drive sessile and motile surface phenotypes. This work forms a basis for future studies using this genetically tractable soil bacterium to study the regulation of microbial development on surfaces.</p

    Genome of the Root-Associated Plant Growth-Promoting Bacterium Variovorax paradoxus Strain EPS

    Get PDF
    Variovorax paradoxus is a ubiquitous betaproteobacterium involved in plant growth promotion, the degradation of xenobiotics, and quorum-quenching activity. The genome of V. paradoxus strain EPS consists of a single circular chromosome of 6,550,056 bp, with a 66.48% G+C content

    Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110

    Get PDF
    Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions

    Genome of the Root-Associated Plant Growth-Promoting Bacterium Variovorax paradoxus Strain EPS

    Get PDF
    Variovorax paradoxus is a ubiquitous betaproteobacterium involved in plant growth promotion, the degradation of xenobiotics, and quorum-quenching activity. The genome of V. paradoxus strain EPS consists of a single circular chromosome of 6,550,056 bp, with a 66.48% G+C content

    Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS

    Get PDF
    Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant.The data presented here point to complex regulation of these surface behaviors

    Culture-Independent Investigation of the Microbiome Associated with the Nematode <i>Acrobeloides maximus</i>

    Get PDF
    <div><p>Background</p><p>Symbioses between metazoans and microbes are widespread and vital to many ecosystems. Recent work with several nematode species has suggested that strong associations with microbial symbionts may also be common among members of this phylu. In this work we explore possible symbiosis between bacteria and the free living soil bacteriovorous nematode <i>Acrobeloides maximus</i>.</p><p>Methodology</p><p>We used a soil microcosm approach to expose <i>A. maximus</i> populations grown monoxenically on RFP labeled <i>Escherichia coli</i> in a soil slurry. Worms were recovered by density gradient separation and examined using both culture-independent and isolation methods. A 16S rRNA gene survey of the worm-associated bacteria was compared to the soil and to a similar analysis using <i>Caenorhabditis elegans</i> N2. Recovered <i>A. maximus</i> populations were maintained on cholesterol agar and sampled to examine the population dynamics of the microbiome.</p><p>Results</p><p>A consistent core microbiome was extracted from <i>A. maximus</i> that differed from those in the bulk soil or the <i>C. elegans</i> associated set. Three genera, <i>Ochrobactrum</i>, <i>Pedobacter</i>, and <i>Chitinophaga</i>, were identified at high levels only in the <i>A. maximus</i> populations, which were less diverse than the assemblage associated with <i>C. elegans</i>. Putative symbiont populations were maintained for at least 4 months post inoculation, although the levels decreased as the culture aged. Fluorescence <i>in situ</i> hybridization (FISH) using probes specific for <i>Ochrobactrum</i> and <i>Pedobacter</i> stained bacterial cells in formaldehyde fixed nematode guts.</p><p>Conclusions</p><p>Three microorganisms were repeatedly observed in association with <i>Acrobeloides maximus</i> when recovered from soil microcosms. We isolated several <i>Ochrobactrum sp.</i> and <i>Pedobacter sp.</i>, and demonstrated that they inhabit the nematode gut by FISH. Although their role in <i>A. maximus</i> is not resolved, we propose possible mutualistic roles for these bacteria in protection of the host against pathogens and facilitating enzymatic digestion of other ingested bacteria.</p></div

    Characterization of Staphylococcus aureus Enterotoxin L

    Get PDF
    Staphylococcus aureus causes a wide variety of diseases. Major virulence factors of this organism include enterotoxins (SEs) that cause both food poisoning and toxic shock syndrome. Recently, a novel SE, tentatively designated SEL, was identified in a pathogenicity island from a bovine mastitis isolate. The toxin had a molecular weight of 26,000 and an isoelectric point of 8.5. Recombinant SEL shared many biological activities with SEs, including superantigenicity, pyrogenicity, enhancement of endotoxin shock, and lethality in rabbits when administered in subcutaneous miniosmotic pumps, but the protein lacked emetic activity. T cells bearing the T-cell receptor β chain variable regions 5.1, 5.2, 6.7, 16, and 22 were significantly stimulated by recombinant SEL
    corecore