39 research outputs found
New approach to the conceptual design of STUMM: A module dedicated to the monitoring of neutron and gamma radiation fields generated in IFMIF-DONES
International Fusion Materials Irradiation Facility — DEMOsingle bondOriented Neutron Source (IFMIF-DONES) is a planned powerful neutron source, which will generate an intense flux of neutrons (up to ∼1015n/s/cm2) with a fusion-relevant energy spectrum. It will be an accelerator source based on deuteron beam - lithium target reactions. The engineering design of IFMIF-DONES is elaborated in the frame of the Early Neutron Source work package of the EUROfusion consortium. The facility will be dedicated to the irradiation of suitable structural materials planned for the construction of future fusion reactors such as DEMO (Demonstration Fusion Power Plant). Start-up Monitoring Module (STUMM) is designed to monitor radiation and thermal conditions during the commissioning phase of IFMIF-DONES, characterize the produced neutron flux and validate neutronic modeling of the facility. The conceptual design of STUMM is prepared by a team of physicists and engineers from the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) and the National Centre for Nuclear Research (NCBJ), Poland. This paper presents the concept of STUMM, the proposed design of the module, and selected measuring systems
Nuclear design of a shielded cabinet for electronics: The ITER radial neutron camera case study
The Radial Neutron Camera (RNC) is a diagnostic system located in ITER Equatorial Port #1 providing several
spatial and time-resolved parameters for the fusion power estimation, plasma control and physics studies. The RNC measures the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium deuterium (DD) fusion reactions through an array of neutron flux detectors located in collimated Lines of
Sight. Signals from RNC detectors (fission chambers, single Crystal Diamonds and scintillators) need pre amplification because of their low amplitude. These preamplifiers have to be as close as possible to the detectors
in order to minimize signal degradation and must be protected against fast and thermal neutrons, gamma radiation and electromagnetic fields. The solution adopted is to host the preamplifiers in a shielded cabinet located in a dedicated area of the Port Cell, behind the Bioshield Plug. The overall design of the cabinet must ensure the necessary magnetic, thermal and nuclear shielding and, at the same, satisfy weight and allocated volume constraints and maintain its structural integrity. The present paper describes the nuclear design of the shielded cabinet, performed by means of 3D particle transport calculations (MCNP), taking into account the radiation streaming through the Bioshield penetrations and the cross-talk effect from the neighboring Lower and Upper Ports. We present the assessment of its nuclear shielding performances and analyze the compliancy with the alert thresholds for commercial electronics in terms of neutron flux and cumulated ionizing dose
Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures
Phase transformation driven by plastic strains is commonly observed in austenitic stainless steels. In the present paper, this phenomenon is addressed in connection with damage evolution. A three-dimensional constitutive model has been derived, and scalar variables for damage and the volume fraction of the transformed phase were used. The model was solved using Abaqus UMAT user defined procedure, as well as by means of simplified one-dimensional approach for a twisted circular bar. Large experimental campaign of tests was performed, including martensite content measurements within the cross-section and on the surface of the bar during monotonic and cyclic loading. Based on the residual angle of twist, damage variable was calculated. The global response of torque versus the angle of twist was measured as well. Comparison between the experimental results and the results obtained from the simplified one-dimensional approach and from the full three-dimensional approach are presented. It turns out that one-dimensional formulation agrees quite well with full three-dimensional model. Thus, much simpler approach can effectively be used. Moreover, experimental results agree well in terms of the martensite content evolution and relation: torque versus the angle of twist. Damage evolution is correctly predicted in terms of the maximum values. Lastly, the evolution of damage during cyclic torsion is discussed, as the experimental results indicate rather surprising effect of unloading modulus recovery after each reversion of twist direction