16,463 research outputs found

    Local physics of magnetization plateaux in the Shastry-Sutherland model

    Full text link
    We address the physical mechanism responsible for the emergence of magnetization plateaux in the Shastry-Sutherland model. By using a hierarchical mean-field approach we demonstrate that a plateau is stabilized in a certain {\it spin pattern}, satisfying {\it local} commensurability conditions derived from our formalism. Our results provide evidence in favor of a robust local physics nature of the plateaux states, and are in agreement with recent NMR experiments on \scbo.Comment: 4 pages, LaTeX 2

    SAOLIM, a prototype of a low cost System for Adaptive Optics with Lucky Imaging

    Full text link
    A prototype of a low cost Adaptive Optics (AO) system has been developed at the Instituto de Astrofisica de Andalucia (CSIC) and tested at the 2.2m telescope of the Calar Alto observatory. We present here the status of the project, which includes the image stabilization system and compensation of high order wavefront aberrations with a membrane deformable mirror. The image stabilization system consists of magnet driven tip-tilt mirror. The higher order compensation system comprises of a Shack-Hartmann sensor, a membrane deformable mirror with 39 actuators and the control computer that allows operations up to 420Hz in closed loop mode. We have successfully closed the high order AO loop on natural guide stars. An improvement of 4 times in terms of FWHM was achieved. The description and the results obtained on the sky are presented in this paper.Comment: Accepted for publishing in PASP, 11 pages, 14 figures, 6 table

    Shear localization as a mesoscopic stress-relaxation mechanism in fused silica glass at high strain rates

    Get PDF
    Molecular dynamics (MD) simulations of fused silica glass deforming in pressure-shear, while revealing useful insights into processes unfolding at the atomic level, fail spectacularly in that they grossly overestimate the magnitude of the stresses relative to those observed, e. g., in plate-impact experiments. We interpret this gap as evidence of relaxation mechanisms that operate at mesoscopic lengthscales and which, therefore, are not taken into account in atomic-level calculations. We specifically hypothesize that the dominant mesoscopic relaxation mechanism is shear banding. We evaluate this hypothesis by first generating MD data over the relevant range of temperature and strain rate and then carrying out continuum shear-banding calculations in a plate-impact configuration using a critical-state plasticity model fitted to the MD data. The main outcome of the analysis is a knock-down factor due to shear banding that effectively brings the predicted level of stress into alignment with experimental observation, thus resolving the predictive gap of MD calculations

    Latitudinal variation of the solar photospheric intensity

    Get PDF
    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement ∼0.1−0.2\sim0.1 - 0.2% corresponding to a brightness temperature enhancement of ∼2.5K\sim2.5{\rm K}). This appears to be thermal in origin and not due to a polar accumulation of weak magnetic elements, with both the continuum and CaIIK intensity distributions shifted towards higher values with little change in shape from their mid-latitude distributions. Since the enhancement is of low spatial frequency and of very small amplitude it is difficult to separate from systematic instrumental and processing errors. We provide a thorough discussion of these and conclude that the measurement captures real solar latitudinal intensity variations.Comment: 24 pages, 8 figs, accepted in Ap

    Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Full text link
    We present results for the short-term variability of Binary Trans-Neptunian Objects (BTNOs). We performed CCD photometric observations using the 3.58 m Telescopio Nazionale Galileo, the 1.5 m Sierra Nevada Observatory telescope, and the 1.23 m Centro Astronomico Hispano Aleman telescope at Calar Alto Observatory. We present results based on five years of observations and report the short-term variability of six BTNOs. Our sample contains three classical objects: 2003MW12, or Varda, 2004SB60, or Salacia, and 2002 VT130; one detached disk object: 2007UK126; and two resonant objects: 2007TY430 and 2000EB173, or Huya. For each target, possible rotational periods and/or photometric amplitudes are reported. We also derived some physical properties from their lightcurves, such as density, primary and secondary sizes, and albedo. We compiled and analyzed a vast lightcurve database for Trans-Neptunian Objects (TNOs) including centaurs to determine the lightcurve amplitude and spin frequency distributions for the binary and non-binary populations. The mean rotational periods, from the Maxwellian fits to the frequency distributions, are 8.63+/-0.52 h for the entire sample, 8.37+/-0.58 h for the sample without the binary population, and 10.11+/-1.19 h for the binary population alone. Because the centaurs are collisionally more evolved, their rotational periods might not be so primordial. We computed a mean rotational period, from the Maxwellian fit, of 8.86+/-0.58 h for the sample without the centaur population, and of 8.64+/-0.67 h considering a sample without the binary and the centaur populations. According to this analysis, regular TNOs spin faster than binaries, which is compatible with the tidal interaction of the binaries. Finally, we examined possible formation models for several systems studied in this work and by our team in previous papers.Comment: Accepted for publication in Astronomy and Astrophysics (June 26th, 2014); minor changes with published version; 21 pages, 17 figures, 7 table

    A photometric search for active Main Belt asteroids

    Full text link
    It is well known that some Main Belt asteroids show comet-like features. A representative example is the first known Main Belt comet 133P/(7968) Elst-Pizarro. If the mechanisms causing this activity are too weak to develop visually evident comae or tails, the objects stay unnoticed. We are presenting a novel way to search for active asteroids, based on looking for objects with deviations from their expected brightnesses in a database. Just by using the MPCAT-OBS Observation Archive we have found five new candidate objects that possibly show a type of comet-like activity, and the already known Main Belt comet 133P/(7968) Elst-Pizarro. Four of the new candidates, (315) Constantia, (1026) Ingrid, (3646) Aduatiques, and (24684) 1990 EU4, show brightness deviations independent of the object's heliocentric distance, while (35101) 1991 PL16 shows deviations dependent on its heliocentric distance, which could be an indication of a thermal triggered mechanism. The method could be implemented in future sky survey programmes to detect outbursts on Main Belt objects almost simultaneously with their occurrence.Comment: 8 pages, 10 figures. Accepted for publication in A&A on December 20, 201

    Locating the critical end point using the linear sigma model coupled to quarks

    Full text link
    We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.Comment: 8 pages, 2 figures, conference paper from ISMD 201
    • …
    corecore