11,878 research outputs found

    Hidden unity in the quantum description of matter

    Full text link
    We introduce an algebraic framework for interacting quantum systems that enables studying complex phenomena, characterized by the coexistence and competition of various broken symmetry states of matter. The approach unveils the hidden unity behind seemingly unrelated physical phenomena, thus establishing exact connections between them. This leads to the fundamental concept of {\it universality} of physical phenomena, a general concept not restricted to the domain of critical behavior. Key to our framework is the concept of {\it languages} and the construction of {\it dictionaries} relating them.Comment: 10 pages 2 psfigures. Appeared in Recent Progress in Many-Body Theorie

    The dimerized phase of ionic Hubbard models

    Full text link
    We derive an effective Hamiltonian for the ionic Hubbard model at half filling, extended to include nearest-neighbor repulsion. Using a spin-particle transformation, the effective model is mapped onto simple spin-1 models in two particular cases. Using another spin-particle transformation, a slightly modified model is mapped into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known to be spontaneously dimerized. From the effective models several properties of the dimerized phase are discussed, like ferroelectricity and fractional charge excitations. Using bosonization and recent developments in the theory of macroscopic polarization, we show that the polarization is proportional to the charge of the elementary excitations

    RAO-II: an AUV for underwater inspection

    Get PDF
    AIRSUB is a research project funded by the Spanish Ministry of Science and Technology whose aim is to explore the industrial applications of underwater robots. The Systems, Robotics and Vision Group (SRV) from the University of the Balearic Islands (UIB) is responsible for the subproject of cable/pipeline inspection [1]. To this purpose, an Autonomous Underwater Vehicle (AUV) is under development as a platform to test the vision algorithms, control strategies and software architectures devised in the last years. This paper describes the main characteristics of the new platform, which is based on a commercial Remotely Operated Vehicle (ROV). The original vehicle has been deeply modifi ed in structure as well as in its electric, electronic and sensorial facets to obtain fully autonomous operation

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    Exact results on the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations

    Full text link
    In this work, we illustrate how a Jordan-Wigner transformation combined with symmetry considerations enables a direct solution of Kitaev's model on the honeycomb lattice. We (i) express the p-wave type fermionic ground states of this system in terms of the original spins, (ii) adduce that symmetry alone dictates the existence of string and planar brane type correlators and their composites, (iii) compute the value of such non-local correlators by employing the Jordan-Wigner transformation, (iv) affirm that the spectrum is inconsequential to the existence of topological quantum order and that such information is encoded in the states themselves, and (v) express the anyonic character of the excitations in this system and the local symmetries that it harbors in terms of fermions.Comment: 14 pages, 7 figure
    • …
    corecore