5 research outputs found

    Возможность использования высокочастотного CuBr-лазера для создания скоростного лазерного монитора

    Get PDF
    Представлены оценки максимальных температур источников как внешней, так и собственной засветки, при которых будут иметь место искажения изображений, формируемых посредствам активных оптических систем. Показана возможность использования высокочастотного CuBr-лазера в качестве усилителя яркости лазерного монитора

    Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder

    No full text
    Bacillus Calmette-Guerin instillation after removal of the tumor is the first line of treatment for urothelial carcinoma in situ (CIS), the precursor lesion of most muscle-invasive bladder cancers. Bacillus Calmette-Guerin therapy fails in >50% of cases, and second-line radical cystectomy is associated with overtreatment and drastic lifestyle consequences. Given the need for alternative bladder-preserving therapies, we identified genomic alterations (GAs) in urothelial CIS having the potential to predict response to targeted therapies. Laser-capture microdissection was applied to isolate 30 samples (25 CIS and 5 muscle controls) from 26 fresh-frozen cystectomy specimens. Targeted next-generation sequencing of 31 genes was performed. The panel comprised genes frequently affected in muscle invasive bladder cancer of nonpapillary origin, focusing on potentially actionable GAs described to predict response to approved targeted therapies or drugs that are in registered clinical trials. Of CIS patients, 92% harbored at least one potentially actionable GA, which was identified in TP53/cell cycle pathway related genes (eg, TP53 and MDM2) in 72%, genes encoding chromatin-modifying proteins (eg, ARID1A and KDM6A) in 68%, DNA damage repair genes (eg, BRCA2 and ATM) in 60%, and phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes (eg, ERBB2 and FGFR1) in 36% of the cases. These data might help guide the selection of targeted therapies to be investigated in future clinical CIS trials, and they may provide a basis for future mechanistic studies of urothelial CIS pathogenesis

    Pure high-grade papillary urothelial bladder cancer: a luminal-like subgroup with potential for targeted therapy

    No full text
    Purpose Non-invasive high-grade (HG) bladder cancer is a heterogeneous disease that is characterized insufficiently. First-line Bacillus Calmette-Guerin instillation fails in a substantial amount of cases and alternative bladder-preserving treatments are limited, underlining the need to promote a further molecular understanding of non-invasive HG lesions. Here, we characterized pure HG papillary urothelial bladder cancer (pure pTa HG), a potential subgroup of non-invasive HG bladder carcinomas, with regard to molecular subtype affiliation and potential for targeted therapy. Methods An immunohistochemistry panel comprising luminal (KRT20, ERBB2, ESR2, GATA3) and basal (KRT5/6, KRT14) markers as well as p53 and FGFR3 was used to analyze molecular subtype affiliations of 78 pure pTa HG/papillary pT1(a) HG samples. In 66 of these, ERBB2 fluorescence in situ hybridization was performed. Additionally, targeted sequencing (31 genes) of 19 pTa HG cases was conducted, focusing on known therapeutic targets or those described to predict response to targeted therapies noted in registered clinical trials or that are already approved. Results We found that pure pTa HG/papillary pT1(a) HG lesions were characterized by a luminal-like phenotype associated with frequent (58% of samples) moderate to high ERBB2 protein expression, rare FGFR3 alterations on genomic and protein levels, and a high frequency (89% of samples) of chromatin-modifying gene alterations. Of note, 95% of pTa HG/papillary pT1 HG cases harbored at least one potential druggable genomic alteration. Conclusions Our data should help guiding the selection of targeted therapies for investigation in future clinical trials and, additionally, may provide a basis for prospective mechanistic studies of pTa HG pathogenesis

    Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning:A Systematic Study Across 23 Solid Tumor Types

    No full text
    In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways

    Comparative genomic profiling of glandular bladder tumours

    No full text
    Primary glandular bladder tumours (bladder adenocarcinoma [BAC], urachal adenocarcinoma [UAC], urothelial carcinoma with glandular differentiation [UCg]) are rare malignancies with histological resemblance to colorectal adenocarcinoma (CORAD) in the majority of this subgroup. Definite case numbers are very low, molecular data are limited and the pathogenesis remains poorly understood. Therefore, this study was designed to complement current knowledge by in depth analysis of BAC (n = 12), UAC (n = 13), UCg (n = 11) and non-invasive glandular lesions (n = 19). In BAC, in addition to known alterations in TP53, Wnt, MAP kinase and MTOR pathway, mutations in SMAD4, ARID1A and BRAF were identified. Compared to published data on muscle invasive bladder cancer (BLCA) and CORAD, UCg exhibited frequent 'urothelial' like alterations while BAC and UAC were characterised by a more 'colorectal' like mutational pattern. Immunohistochemically, there was no evidence of DNA mismatch repair deficiency or PD-L1 tumour cell positivity in any sample. Depending on the used antibody 0-45% of BAC, 0-30% of UCg and 0% UAC cases exhibited PD-L1 expressing tumour associated immune cells. A single BAC (9%, 1/11) showed evidence of ARID1A protein loss, and two cases of UCg (20%, 2/10) showed loss of SMARCA1 and PBRM1, respectively. Taken together, our data suggest at least in part involvement of similar pathways driving tumourigenesis of adenocarcinomas like BAC, UAC and CORAD independent of their tissue origin. Alterations of TERT and FBXW7 in single cases of intestinal metaplasia further point towards a possible precancerous character in line with previous reports
    corecore