18,932 research outputs found

    Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals

    Get PDF
    A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results

    Magnetic remanence of Josephson junction arrays

    Full text link
    In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tridimensional disordered arrays. We also discuss the influence of the critical current distribution on the temperature interval within which the array develops a magnetic remanence. This effect can be used to determine the critical current distribution of an array.Comment: 8 pages, 4 figures, Talk to be presented on 44th Annual Conference on Magnetism & Magnetic Materials, San Jose, CA, USA Accepted to be published in Journal of Applied Physic

    Frictional Collisions Off Sharp Objects

    Get PDF
    This work develops robust contact algorithms capable of dealing with multibody nonsmooth contact geometries for which neither normals nor gap functions can be defined. Such situations arise in the early stage of fragmentation when a number of angular fragments undergo complex collision sequences before eventually scattering. Such situations precludes the application of most contact algorithms proposed to date

    Combined grazing incidence RBS and TEM analysis of luminescent nano-SiGe/SiO2 multilayers.

    Get PDF
    Multilayer structures with five periods of amorphous SiGe nanoparticles/SiO2 layers with different thickness were deposited by Low Pressure Chemical Vapor Deposition and annealed to crystallize the SiGe nanoparticles. The use of grazing incidence RBS was necessary to obtain sufficient depth resolution to separate the signals arising from the individual layers only a few nm thick. The average size and areal density of the embedded SiGe nanoparticles as well as the oxide interlayer thickness were determined from the RBS spectra. Details of eventual composition changes and diffusion processes caused by the annealing processes were also studied. Transmission Electron Microscopy was used to obtain complementary information on the structural parameters of the samples in order to check the information yielded by RBS. The study revealed that annealing at 900 °C for 60 s, enough to crystallize the SiGe nanoparticles, leaves the structure unaltered if the interlayer thickness is around 15 nm or higher

    Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center

    Full text link
    In this work we solved the time-dependent Ginzburg-Landau equations, TDGL, to simulate two superconducting systems with different lateral sizes and with an antidot inserted in the center. Then, by cycling the external magnetic field, the creation and annihilation dynamics of a vortex-antivortex pair was studied as well as the range of temperatures for which such processes could occur. We verified that in the annihilation process both vortex and antivortex acquire an elongated format while an accelerated motion takes place.Comment: 4 pages, 5 figures, work presented in Vortex VII
    corecore