163 research outputs found

    High speed wafer scale bulge testing for the determination of thin film mechanical properties

    Get PDF
    Journal ArticleA wafer scale bulge testing system has been constructed to study the mechanical properties of thin films and microstructures. The custom built test stage was coupled with a pressure regulation system and optical profilometer which gives high accuracy three-dimensional topographic images collected on the time scale of seconds. Membrane deflection measurements can be made on the wafer scale (50-150 mm) with up to nanometer-scale vertical resolution. Gauge pressures up to 689 kPa (100 psi) are controlled using an electronic regulator with and accuracy of approximately 0.344 kPa (0.05 psi). Initial testing was performed on square diaphragms 350, 550, and 1200 µm in width comprised of 720± 10 nm thick low pressure chemical vapor deposited silicon nitride with ~20 nm of e-beam evaporated aluminum. These initial experiments were focused on measuring the system limitations and used to determine what range of deflections and pressures can be accurately measured and controlled. Gauge pressures from 0 to ~8.3 kPa (1.2 psi) were initially applied to the bottom side of the diaphragms and their deflection was subsequently measured. The overall pressure resolution of the system is good (~350 Pa) but small fluctuations existed at pressures below 5 kPa leading to a larger standard deviation between deflection measurements. Analytical calculations and computed finite element analysis deflections closely matched those empirically measured. Using an analytical solution that relates pressure deflection data for the square diaphragms the Young's modulus was estimated for the films assuming a Poisson's ratio of v=0.25. Calculations to determine Young's modulus for the smaller diaphragms proved difficult because the pressure deflection relationship remained in the linear regime over the tested pressure range. Hence, the calculations result in large error when used to estimate the Young's modulus for the smaller membranes. The deflection measurements of three 1200x1200 µm2 Si3N4−x membranes were taken at increased pressures (>25 kPa) to increase nonlinearity and better determine Young's modulus. This pressure-deflection data were fit to an analytical solution and Young's modulus estimated to be 257±3 GPa, close to those previously reported in literature

    Travelling with golf clubs: the influence of baggage on the trip decision-making process

    Get PDF
    Sports participation often requires the use of specialist equipment and for many sport tourists this is transported to the destination to aid convenience and enjoyment of participation. Yet, to date there has been little consideration of the influence that travelling with sporting equipment can have on the trip decisions making process. This paper focuses on golf tourism, said to be the largest sector of the sports tourism market and examines the influence that traveling with golf equipment has on aspects of the trip such as travel mode and opportunities for participation. Based on a longitudinal grounded theory study this paper concludes that packing sporting equipment can stimulate negotiations associated with participation. Furthermore the nature of the sporting equipment to be carried can determine the choices made regarding the travel modes used to reach and move around holiday destinations and thus directly influence the trip decision making process

    High speed wafer scale bulge testing for the determination of thin film mechanical properties

    No full text
    A wafer scale bulge testing system has been constructed to study the mechanical properties of thin films and microstructures. The custom built test stage was coupled with a pressure regulation system and optical profilometer which gives high accuracy three-dimensional topographic images collected on the time scale of seconds. Membrane deflection measurements can be made on the wafer scale (50–150 mm) with up to nanometer-scale vertical resolution. Gauge pressures up to 689 kPa (100 psi) are controlled using an electronic regulator with and accuracy of approximately 0.344 kPa (0.05 psi). Initial testing was performed on square diaphragms 350, 550, and 1200 μm in width comprised of 720±10 nm thick low pressure chemical vapor deposited silicon nitride with ∼20 nm of e-beam evaporated aluminum. These initial experiments were focused on measuring the system limitations and used to determine what range of deflections and pressures can be accurately measured and controlled. Gauge pressures from 0 to ∼8.3 kPa (1.2 psi) were initially applied to the bottom side of the diaphragms and their deflection was subsequently measured. The overall pressure resolution of the system is good (∼350 Pa) but small fluctuations existed at pressures below 5 kPa leading to a larger standard deviation between deflection measurements. Analytical calculations and computed finite element analysis deflections closely matched those empirically measured. Using an analytical solution that relates pressure deflection data for the square diaphragms the Young’s modulus was estimated for the films assuming a Poisson’s ratio of v=0.25. Calculations to determine Young’s modulus for the smaller diaphragms proved difficult because the pressure deflection relationship remained in the linear regime over the tested pressure range. Hence, the calculations result in large error when used to estimate the Young’s modulus for the smaller membranes. The deflection measurements of three 1200×1200 μm2 Si3N4−x membranes were taken at increased pressures (>25 kPa) to increase nonlinearity and better determine Young’s modulus. This pressure-deflection data were fit to an analytical solution and Young’s modulus estimated to be 257±3 GPa, close to those previously reported in literature
    • …
    corecore