86 research outputs found

    Predation on seeds of the seagrass Posidonia australis in Western Australia

    Get PDF
    Despite much evidence that predation governs seed abundance, and ultimately seedling and adult plant distribution and abundance in terrestrial ecosystems, there is a dearth of information from seagrass dominated ecosystems. We report here on the first study to examine predation rates from seeds of Posidonia australis measured during field tethering experiments at 5 locations in Western Australia. Seeds that were recently dehisced from ripe fruits and at a similar stage of development were tethered in seagrass and adjacent unvegetated sand for 24 h and then assessed for damage. Seed predation was noted at all sites and ranged from partially to completely eaten seeds. Higher daily proportional damage was observed in seagrass (34 to 53%) than on unvegetated sand (3 to 20%), but was significantly greater at only 3 of the 5 sites. There was no significant difference in proportional mortality for seeds among seagrass meadows, whereas in sand, there was a significant site effect. While we were unable to identify specific seed predators, the type of damage we observed on the seeds suggest small fish or invertebrates are the primary causative agents. Our results add to the growing body of evidence that seagrass seed predation does occur, that it has the potential to affect recruitment, and has implications for understanding the dynamics of P. australis meadows. Finally, our data present an interesting contrast to the paradigm for seagrass faunal studies, which almost invariably have shown higher proportional mortality in bare sand than in seagrass

    Interplay between magnetism and band topology in Kagome magnets RMn6Sn6

    Get PDF
    Kagome-lattice magnets RMn6Sn6 recently emerged as a new platform to exploit the interplay between magnetism and topological electronic states. Some of the most exciting features of this family are the dramatic dependence of the easy magnetization direction on the rare-earth specie, despite other magnetic and electronic properties being essentially unchanged, and the Kagome geometry of the Mn planes that in principle can generate flat bands and Dirac points; gapping of the Dirac points by spin-orbit coupling has been suggested recently to be responsible for the observed anomalous Hall response in the member TbMn6Sn6. In this paper, we address both issues with density functional calculations and are able to explain, with full quantitative agreement, the evolution of magnetic anisotropy, including a complete reversal upon adding an f-electron with zero magnetic orbital quantum number when going from Ho to Er. We also show the microscopic origin of this computational result using a simple and physically transparent analytical model. We analyze in detail the topological properties of Mn-dominated bands and demonstrate how they emerge from the multiorbital planar Kagome model. We further show that, despite this fact, most of the topological features at the Brillouin zone corner K are strongly 3D, and therefore cannot explain the observed quasi-2D AHE, while those few that show a quasi-2D dispersion are too far removed from the Fermi level. We conclude that, contrary to previous claims, Kagome-derived topological band features bear little relevance to transport in RMn6Sn6, albeit they may possibly be brought to focus by electron or hole doping.This is a pre-print of the article Lee, Y., R. Skomski, X. Wang, P. P. Orth, A. K. Pathak, B. N. Harmon, R. J. McQueeney, and Liqin Ke. "Interplay between magnetism and band topology in Kagome magnets RMn6Sn6." arXiv preprint arXiv:2201.11265 (2022). DOI: 10.48550/arXiv.2201.11265. Copyright 2022 The Authors. Posted with permission
    • …
    corecore